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The clinical manifestation of metastasis in a vital organ is the final stage of
cancer progression and the main culprit of cancer-related mortality. Once
established, metastasis is devastating, but only a small proportion of the cancer
cells that leave a tumor succeed at infiltrating, surviving, and ultimately over-
taking a distant organ. The bottlenecks that challenge cancer cells in newly
invaded microenvironments are organ-specific and consequently demand dis-
tinct mechanisms for metastatic colonization. We review the metastatic traits
that allow cancer cells to colonize distinct organ sites.

Organ Tropism of Metastatic Cells
Metastasis results from disseminated cancer cells that initiate new tumors at distant organ sites.
The metastatic cascade involves multiple steps, including invasion, entry into the circulation from
the primary tumor, systemic dissemination, arrest and extravasation in secondary organs,
settlement into latency, reactivation, outgrowth, and potential seeding of tertiary metastasis
(Box 1 summarizes the early steps of the metastatic cascade) [1–3]. The pattern of affected
organs is remarkably variable depending on the cancer type [1,2,4,5] (Figure 1, Key Figure).
Some cancer types predominantly spread to one organ (e.g., prostate cancer to bone,
pancreatic cancer and uveal melanoma to liver), or show sequential organ-specific colonization
(e.g., colorectal cancer, CRC, frequently metastasizes first to the liver, and later to the lungs).
Other cancer types, such as breast cancer, lung cancer, and melanoma, are able to colonize
many different organ sites, either sequentially or synchronously [1,5,6]. Although defined organ
tropisms are not rigid phenomena, the organ-specific patterns of metastasis are clear (Figure 1).
Beyond lymph node spread, the liver, lung, bone, and brain are frequently colonized by a variety
of cancer types. The skin, ovaries, and spleen are less common sites of metastasis. Skin
metastases generally occur in melanoma and breast cancer, ovarian metastases in breast and
gastric cancers, and spleen metastases almost exclusively in melanoma [5].

What determines the organ tropism of metastases? Each organ varies in its physical accessi-
bility, vascular and nutrient supply, and stromal composition, thus placing different demands on
infiltrating cancer cells [1]. The organ-specific circulation pattern and the anatomy of vessels
certainly influence metastatic spread. However, this does not fully explain the organ-specific
pattern of metastasis clinically observed in most cancers. For example, kidneys, liver, and brain
equally receive approximately 10–20% of blood volume, but each shows a very different pattern
of metastasis [5]. This discrepancy between anatomy and metastasis in different organs has long
been observed and forms the basis for the ‘seed and soil’ hypothesis, according to which cancer
cell seeds have intrinsic compatibilities with particular welcoming organ microenvironment soils
[7,8]. This view is supported by recent observations that distinct cancer subtypes display
significant variations in their organ specificity. For instance, adenocarcinoma of the lung spreads
more frequently to the brain and adrenal gland than does squamous carcinoma of the lung [5].
Among different breast cancer subtypes, luminal breast tumors have a higher propensity to form
bone metastasis, and HER2+ (human epidermal growth factor receptor 2) breast cancer is

Trends
The pattern of affected organs in
metastasis is variable depending on
the tumor of origin, indicating that
intrinsic cancer cell traits, the physical
accessibility of target organs, and the
composition of host-organ microenvir-
onments are important determinants of
distant metastasis.

Metastasis is an inefficient process in
which few cells succeed at reestablish-
ing a tumor at a distant organ.

Organ-specific metastasis involves
cancer cell interactions with the host
microenvironment, including activation
of paracrine cytokine loops, modifica-
tion of the host cellular composition,
and alteration of extracellular matrix
structures.

Immune cell evasion, association with a
supportive niche, and the ability to
amplify survival pathways, often
achieved through interaction with the
stroma, are essential for successful
metastatic colonization.

1Cancer Biology and Genetics
Program, Memorial Sloan Kettering
Cancer Center, New York, NY 10065,
USA

*Correspondence:
j-massague@ski.mskcc.org
(J. Massagué).

76 Trends in Cancer, September 2015, Vol. 1, No. 1 http://dx.doi.org/10.1016/j.trecan.2015.07.009
© 2015 Elsevier Ltd. All rights reserved.

mailto:j-massague@ski.mskcc.org
http://dx.doi.org/10.1016/j.trecan.2015.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trecan.2015.07.009&domain=pdf


Box 1. The Metastatic Cascade

Overt metastasis is the final manifestation of a series of stochastic events collectively known as the ‘metastatic cascade’.
The cascade can be parsed into distinct steps: (1) local invasion, (2) intravasation, (3, 4) dissemination in the circulation
and arrest at the distant site, (5) extravasation, and (6, 7) colonization of target organs (Figure I). These steps have been
extensively reviewed in [1,2,122].

Step (1). To invade from the confined primary tumor to the adjacent parenchyma, tumor cells utilize the action of variety
of extracellular proteases, including matrix metalloproteinases (MMPs) and cathepsins, which break down the
extracellular matrix (ECM) and trigger the release of growth factors that influence tumor growth and invasion
[79,123]. The invasive front of a tumor is an important interface at which cancer and stromal cells interact closely
[124]. Myeloid cells accumulate at the invasive front, generating an immunosuppressive environment. Tumor-
associated macrophages and fibroblasts promote the invasion of cancer cells by producing pro-migratory factors
or by depositing fibrillar collagen [125–128].

Step (2). Departure from a primary tumor is favored by the epithelial-to-mesenchymal transition (EMT) of cancer cells.
EMT involves loss of intercellular adhesion, epithelial polarization, and the gain of mesenchymal traits [122]. In cancer
cells, EMT supports self-renewal, motility, and invasiveness, traits that favor metastatic dissemination [122,129,130].
A leaky neovasculature generated by the primary tumor contributes to easier access to the circulation.

Step (3, 4). Cancer cells may invade and intravasate as single cells or as multicellular clusters, and associate with non-
neoplastic cells which may enhance their survival during dissemination [120,125,131]. At distant organ sites, circulating
tumor cells arrest in narrow capillary beds and extravasate. Rapid physical trapping due to the size of the vasculature
likely plays a major role in this process [132]. The capacity to arrest at distant organs may also be determined by specific
functions of the cancer cells, for example by forming adhesive connections in specific organs as has been described for
breast cancer in the lung vasculature [133].

Step (5). Cancer cells lodged in the microvasculature may initiate intraluminal growth and form an embolus that eventually
ruptures the blood vessel or, more frequently, cancer cells may extravasate directly into the tissue parenchyma by
penetrating the microvascular wall. In the bone marrow or the liver, the vasculature is fenestrated and poses a lower
physical barrier than in other organs such as the lungs or the brain [1,2]. There, the vasculature is surrounded by a tight
basement membrane that is additionally reinforced by pericytes and astrocytes, and the cancer cells therefore require
additional specialized functions to extravasate into the parenchyma [14,64].

Step (6, 7). The vast majority of cancer cells that extravasate into the parenchyma will die, but a minority of these cells may
enter a period of dormancy and survive for months to decades. From such disseminated tumor cell populations a few
cancer cells may reinitiate growth and establish a full-fledged tumor at the distant site.
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Figure I. The Metastatic Cascade.
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Key Figure

Patterns of Metastatic Spread of Solid Tumors
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Figure 1. Different cancer types exhibit remarkable variability in their metastatic course, reflected in the length of the latency
period (months to years), the organs affected (most commonly the liver, lung, bone, and brain) and the type of metastasis
(e.g., osteolytic or osteoblastic bone metastasis). Latency period (denoted by the arrow on top of the figure – left: months,
right: years after diagnosis): lung cancer metastasis typically occurs within months after initial diagnosis, whereas prostate
cancer and some subtypes of breast cancer can produce distant relapse up to decades after initial diagnosis. Lung cancer
is the main contributor to brain metastasis, whereas it is a late occurrence in breast cancer. Organ pattern (the most-
frequently affected organ is located on the top of each cancer type): lung and breast cancers metastasize to different organs
(with a different propensity), whereas colon cancer most frequently metastasizes to liver, and from established liver
metastasis secondarily to lung. Prostate cancer typically although not exclusively metastasizes to bone. Different cancer
types also vary in the type of metastatic lesions they induce, well illustrated by the development of osteolytic bone
metastasis in breast and lung cancer, and osteoblastic bone metastasis in prostate cancer. Abbreviation: BM, bone
metastasis.
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associated with a higher frequency of liver metastases [9–11]. Nonetheless, the proportion of
disseminated cancer cells that survive to achieve metastatic colonization is vanishingly low
[2,12,13], meaning that most seeds are poorly endowed and no soil is really very welcoming.

These clinical observations are complemented by a wealth of data from experimental mouse
models. These models have revealed tumor-intrinsic and -extrinsic mechanisms dictating organ-
specific metastatic progression against a background of massive attrition of the disseminated
cancer cells [13–31]. These studies support the notion that organ-specific metastasis depends
not only on extrinsic factors enabling cancer cell access to organs, such as circulation patterns
and vascular wall accessibility, but also on the intrinsic abilities of the metastatic cancer cells
themselves. For example, intrinsic abilities to interact with the host microenvironment allow
cancer cells to cross physical barriers, survive in distant sites, engage with a distinct organ-
specific cell types, and eventually overtake the host tissue (Box 1).

Metastasis is above all a Darwinian selection process in which cancer cells with distinct
metastatic traits that enable them to overcome metastatic bottlenecks are selected from a
genetically- and epigenetically-heterogeneous tumor cell population [32,33]. The bottlenecks
that exert selective pressures are distinct at each step of the metastatic cascade. Cancer cell
clones expand as a function of their ability to surpass the specific demands of each step of the
metastatic cascade, and continue to evolve thereafter [33–36].

General mediators of metastasis, such as those supporting invasion, the ability to amplify survival
pathways, or immune evasion, increase the probability of cancer cells to adapt and, conse-
quently, survive through multiple specific challenges in multiple organs. By contrast, specific
genes and pathways enable passage through crucial organ-specific barriers, such as crossing
the blood–brain barrier, or mediate beneficial interactions with organ-specific cell types, such as
the osteoclasts in the bone marrow. In addition to tumor cell-autonomous traits that increase the
probability of disseminated cancer cells to establish overt metastasis, the paracrine interaction
with stromal cells and tumor-driven systemic processes can have a profound impact on
metastasis, for instance by stimulating the growth of distant tumor cells or by generating a
pre-metastatic niche at a distant site [37]. During all stages of the metastatic cascade tumor cells
enlist the help of non-neoplastic cells (extensively reviewed in [38–40]). Individually, all these traits
promote survival of individual cancer cells when facing a harsh encounter with a new organ
microenvironment and, with that, these traits increase the probability of achieving clinically-overt
metastasis. In this review we focus on the mechanisms that enable cancer cells to grow out and
take over the distant organ.

The Final Stage of the Metastatic Cascade: Organ Colonization
Fine-tuned crosstalk between cancer cells and their microenvironment is required for successful
colonization of a distant organ. This may be achieved by distinct mechanisms including, but not
limited to, (i) evasion of the immune system or other detrimental signals that may threaten cancer
cell survival, (ii) interaction with stem cell niches and resident cell populations to promote survival
signals in the local microenvironment, and (iii) recruitment of cell populations that modify the new
host microenvironment to better match the growth requirements of the cancer cells. Mechanistic
dissection of organ-specific metastatic colonization in experimental mouse models over the past
decade has shed light on these organ-specific metastatic traits, the composition of permissive
metastatic niches, and how complex interactions between cancer cells and their niche result in
overt metastasis.

Bone Metastasis
Approximately 60–85% of patients with metastatic breast and prostate cancer harbor bone
metastases, often resulting in pathological fractures, chronic pain, and neurological
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compression syndromes [41]. The small blood vessels in the bone marrow, the sinusoids, are
lined with fenestrated endothelia to allow the traffic of hematopoietic cells. The bone marrow
sinusoids are likely more permissive to circulating tumor cells (CTCs) than are other types of
capillaries. In addition, bone matrix cells like osteoblasts secrete a variety of chemo-attracting
factors (e.g., CXCL12, RANKL, OPN, or BMPs) that recruit cancer cells to the bone marrow
[41,42] (Figure 2, top).

After extravasation into the bone marrow, cancer cells may benefit from abundantly expressed
soluble factors, such as CXCL12 (C-X-C motif chemokine 12) and IGF1 (insulin-like growth
factor 1), that stimulate PI3K (phosphoinositide 3-kinase)–AKT (protein kinase B) signaling – a
pathway well known to enhance cancer cell survival in challenging environments [43] (Figure 2,
top). Cancer cells with elevated SRC (SRC proto-oncogene tyrosine kinase) signaling and high
expression levels of CXCR4 (the receptor for CXCL12) are especially primed to utilize the
physiological survival signals in the bone marrow, thereby increasing the probability of establish-
ing overt metastasis later on [21,26]. In addition, high SRC activity has been shown to counteract
proapoptotic signaling of TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand/
TNFSF10], a cytokine also present in bone metastatic lesions [21,44]. These findings from
animal models are also reflected in clinical datasets in which CXCR4 expression and expression
of the SRC signature in tumor cells is associated with breast cancer bone relapse [21].

The need to find supportive niches within an organ is of importance for the survival of
disseminated metastatic stem cells [45]. Cancer cells may take up residence in stem cell niches
of the bone marrow. Prostate cancer cells compete with hematopoietic stem cells (HSCs) for
occupancy of stem cell niches [46] and breast cancer cells can occupy osteogenic niches [47]
(Figure 2, top). In these niches, cancer cells may benefit from heterotypic adherens junctions
between E-cadherin on cancer cells and N-cadherin on osteogenic cells. E-cadherin expression
correlates with bone metastasis in patient samples, and early disruption of the adherens
junctions reduces bone metastasis in mouse models [47]. Similarly, the expression of /4b1
integrin and its ligand, vascular cell adhesion molecule-1 (VCAM1), facilitates microenvironmen-
tal crosstalk in the bone marrow to promote the expansion of micrometastases in preclinical
models [28,48,49].

During the final phase of overt colonization metastatic cancer cells can also actively modify the
bone microenvironment in their favor by disturbing the complex and tightly regulated network of
signals that control bone homeostasis by regulating osteoblasts and osteoclasts (Figure 2,
bottom). Depending on the signals released from cancer cells, bone metastases manifest as
osteoblastic lesions, osteolytic lesions, or a combination thereof [41,50]. In osteoblastic lesions,
which are typically of prostate cancer metastasis, tumor cells stimulate bone matrix deposition
by osteoblasts, resulting in increased bone density and eventual displacement of the bone
marrow [51]. Factors secreted by prostate cancer cells that promote osteoblastic bone metas-
tasis include fibroblast (FGF), insulin-like (IGF), vascular endothelial (VEGF), and platelet-derived
(PDGF) growth factors, as well as endothelin 1 (ET1), WNT (wingless/int) family members, and
bone morphogenetic proteins (BMPs) [41,51–55].

In osteolytic lesions, which are caused most commonly by breast cancer and lung cancer, the
metastatic cells activate bone-resorbing osteoclasts, which produce collagenases and other
proteases that degrade extracellular matrix (ECM) proteins and demineralize the bone matrix
[41,56]. Taking center stage in the formation of osteolytic bone metastasis is NF-kB ligand
[RANKL, receptor activator of nuclear factor kb (RANK) ligand/TNFRSF11A] signaling [41].
Tumor cell-derived parathyroid hormone-like hormone (PTHrP/PTHLH), interleukin (IL)-11, IL-6,
and TNF-/ cue osteoblasts to release RANKL, which induces osteoclast formation and the
subsequent resorption of the bone [41,50]. Bone metastatic cancer cells also secrete matrix
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Figure 2. Osteolytic Metastatic Colonization of the Bone. The capillaries in the bone, known as sinusoids, are lined
with fenestrated endothelia that facilitate the traffic of hematopoietic cells. Thus, the bone marrow sinusoids are likely
permissive to cancer cell passage. (Upper panel) Upon infiltrating the bone marrow, cancer cells are exposed to a variety of
growth- and death-promoting signals which are thought to force cancer cells into a latent state until they acquire the
necessary traits for overt metastasis. In this state cancer cells benefit from secreted survival signals (CXCL12) from bone-
resident cells and by direct interaction with osteogenic cells and pre-osteoclasts. (Lower panel) A crucial step in the
formation of overt osteolytic bone metastasis is the activation of osteoclasts. This process is locally facilitated by cancer cell-
derived mediators including PTHrP, IL-11 and others that stimulate the secretion of RANKL by osteoblasts. Cleavage and
release of membrane bound RANKL, or inactivation of the antagonist OPG can also contribute to increasing RANKL activity.
Alternatively, cancer cells trigger the secretion of IL-6 by osteoblasts, which in turn induces osteoclast differentiation.
Activated osteoclasts execute bone resorption, which releases TGF-b and other growth factors that are embedded in the
mineralized bone matrix. TGF-b then further stimulates the expression of osteolytic factors in the cancer cells, resulting in a
vicious cycle of bone metastasis. Abbreviations: BMP, bone morphogenetic protein; CXCL12, chemokine C-X-C motif
ligand 12, also known as SDF1; ICAM1, intracellular adhesion molecule 1; IL, interleukin; JAG1, Jagged 1; MMP, matrix
metalloprotease; OPG, osteoprotegerin; PTHrP, parathyroid hormone-like hormone; RANKL; receptor activator of nuclear
factor kb ligand; TGF-b, transforming growth factor b, TRAIL, tumor necrosis factor (TNF)-related apoptosis-inducing
ligand; VCAM, vascular cell adhesion molecule.
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metalloproteases (MMPs), which increase local RANKL activity, either directly by cleaving and
releasing membrane-bound RANKL [57], or indirectly, by reducing the level of the RANKL-
antagonist osteoprotegrin [58].

One consequence of bone resorption in osteolytic metastasis is the release of growth factors
that are normally embedded in the mineralized bone matrix (Figure 2, bottom). The released
growth factors then stimulate tumor growth, leading to the production of additional osteolytic
and osteoblastic factors, and resulting in the ‘vicious cycle’ of bone metastasis [41,50,56].
Transforming growth factor b (TGF-b) is abundant in the bone matrix and is released during
osteoclastic bone resorption [41]. In breast and melanoma models, TGF-b signaling plays an
essential role in the establishment of bone metastasis. TGF-b signaling is activated in bone
metastasis of breast cancer patients, and inhibition of the TGF-b pathway reduces bone
metastasis formation in preclinical models [24,59–61]. It has recently been shown that bone
tropic prostate cancer cells also benefit from TGF-b signaling, which is further amplified by
reduced levels of PMEPA1 (prostate transmembrane protein, androgen-induced 1), a negative
regulator of TGF-b signaling. In patients, PMEPA1 levels decreased in metastatic lesions
compared with the primary tumor, and low PMEPA1 levels correlated with worse prognosis [62].

Additional mechanisms that promote osteolytic bone metastasis involve the Notch ligand
Jagged 1 (JAG1), the expression of which is also regulated by TGF-b. JAG1 overexpression
mediates bone metastasis in a human hormone receptor-negative (‘triple negative’) breast
cancer cell line [24] and is associated with bone metastatic relapse in different patient cohorts
[30]. In xenograft models, JAG1 promotes osteolytic bone metastasis by activating Notch
signaling in osteoblasts, which induces the secretion of IL-6 and directly activates osteoclast
differentiation [30] (Figure 2, bottom). Osteoclast differentiation is also influenced by tumor-
derived factors (e.g., soluble intracellular adhesion molecule 1, sICAM-1), which induce wide-
spread changes in microRNA abundance [31]. In in vitro experiments osteoclast differentiation
could be blocked by the ectopic expression of several microRNAs which target osteoclast
genes. In a xenograft model, the delivery of these microRNAs inhibited osteoclast activity and
reduced osteolytic bone metastasis from breast cancer cells. Clinically, serum levels of sICAM-1
and two microRNAs that were elevated during osteoclast differentiation, mir-16 and mir-378, are
associated with bone metastasis burden [31]. These examples show that factors secreted by
cancer cells can modulate the bone metastatic microenvironment and determine the type of
bone metastases formed.

Lung Metastasis
Lung metastasis is frequent in different types of cancer, including breast cancer, gastrointestinal
tumors, renal carcinomas, melanoma, different types of sarcoma, and lung cancer itself [5]. Lung
capillaries are lined with endothelial cells that are surrounded by a basement membrane and
adjacent alveolar cells [1]. To cross these structural obstacles, breast cancer and melanoma
cells express specific mediators such as SPARC (secreted protein, acidic, cysteine-rich/osteo-
nectin), the TGF-b-inducible factor angiopoietin-like 4 (ANGPTL4), and the secreted C-terminal
fibrinogen-like domain of angiopoietin-like 4 (cANGPTL4) [63–65]. The expression of these
mediators enhances the extravasation of tumor cells in the lung by dissociating the cell–cell
junctions between endothelial cells (Figure 3). Other factors expressed by cancer cells are the
EGF (epidermal growth factor) receptor ligand epiregulin, the prostaglandin synthase COX2
(cytochrome c oxidase polypeptide II), and the metalloproteinases MMP1 and MMP2, which
foster the breaching of lung capillaries to seed metastasis [66]. All these mediators are upregu-
lated in breast tumors and their expression predicts relapse to the lungs [16,63,66], reinforcing
the concept that metastatic traits required in early steps of the metastatic cascade are already
selected for in the primary tumor, where they may play a different role in processes such as tumor
angiogenesis.
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After extravasation in the lung parenchyma, tumor–stroma interactions play a crucial role in
amplifying the output of survival and stemness pathways in cancer cells, consequently increas-
ing their chances of surviving (Figure 3). In an MMTV (mouse mammary tumor virus)-driven
polyomavirus middle T (PyMT) mouse breast cancer model, lung metastatic cancer stem cells
stimulate the expression of the ECM protein periostin in lung fibroblasts via secretion of TGF-b3
[67]. Increased periostin levels recruit WNT ligands and stimulate WNT signaling preferentially in
cancer stem cells, ultimately promoting lung colonization [67]. In the ECM, periostin interacts
with the hexameric glycoprotein tenascin C (TNC) [68]. TNC is expressed at the invasive front of
tumors where it also binds to fibronectin, integrins, and syndecan membrane proteoglycan, and
is associated with poor prognosis and lung relapse in breast cancer patients [69]. TNC
expression by fibroblasts or the tumor cells amplifies the Notch signaling output, and promotes
the survival of the tumor cells and their colonization of the lung [69,70]. As the metastatic lesion
grows and recruits cancer-associated fibroblasts, tumor cell derived TNC is joined by TNC from
the stroma in this supportive role [69]. Lung-tropic human breast cancer cells express high levels
of VCAM1, which is engaged by /4b1-integrins on tumor-associated macrophages. In
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poietin-like 4; AKT, protein kinase B; bCat, b-catenin; BMP, bone morphogenetic protein; COX2, cytochrome c oxidase
polypeptide II; ID, inhibitor of differentiation; MMP, matrix metalloproteinase; PI3K, phosphoinositide 3-kinase; POSTN,
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xenograft models this interaction triggers VCAM1 activation of ezrin, which subsequently
enhances PI3K–AKT signaling in the cancer cells and increases their survival [71].

In addition to these interactions with the metastatic niche, cell-intrinsic mechanisms are also
essential for the outgrowth of disseminated tumor cells. For example, the expression of inhibitor
of differentiation 1 (ID1) and ID3 in breast cancer cells supports metastasis initiation after
infiltration of the target parenchyma [72]. ID1 is under the control of TGF-b signaling and
induces mesenchymal–epithelial transition (MET) at the metastatic site by antagonizing the
transcription factor Twist1. Loss of ID1 dramatically reduced lung colonization in a xenograft
model [73]. The microRNA mir-200 is intricately linked to the epithelial–mesenchymal transition
(EMT)–MET program, and its overexpression promotes metastatic colonization of the lung. In
addition to regulating E-cadherin, expression of mir-200 promotes metastatic colonization by
targeting SEC23A (Sec23 homolog A), which regulates the secretion of metastasis suppressive
proteins IGFBP4 (IGF binding protein 4) and TINAGL1 (tubulointerstitial nephritis antigen-like 1)
[74]. Metastatic cells in the lungs may also have to overcome antagonistic signals from the
stroma [75]. For example, BMP signals can promote differentiation of allograft breast cancer
cells in the lungs. In this model, the BMP-sequestering protein Coco promotes metastatic
outgrowth [76] (Figure 3).

Brain Metastasis
Metastasis in the central nervous system (CNS) principally involves the brain parenchyma and
the leptomeninges, and it has a particularly poor prognosis with high morbidity and mortality. The
median survival of patients with brain metastasis is in the order of months, and few effective
treatments are currently available [77]. More than half of brain metastases derive from lung
adenocarcinoma, followed by breast cancer and melanoma [5]. To enter the brain parenchyma,
cancer cells must traverse microcapillary walls that constitute the blood–brain barrier, which
consists of tightly adjoined endothelial cells that are lined by a basement membrane, pericytes,
and astrocyte foot processes [78]. To cross this barrier and access the brain parenchyma,
cancer cells require specialized mechanisms. Some of the molecular mediators of this process
have been identified, including the acetylgalactosaminide sialyltransferase ST6GalNac5, COX2,
HBEGF (heparin-binding EGF-like growth factor), MMP2, mir-105, and the protease cathepsin S
[14,79,80] (Figure 4).

Metastatic colonization of the brain proceeds with close apposition of cancer cells at the
abluminal side of the microcapillaries [81,82]. Small lesions often develop without establishing
new vasculature [83]. Recently, lung cancer and breast cancer metastatic cells were shown to
express the cell adhesion molecule L1CAM for spreading on the basement membrane of brain
capillaries after extravasation into the brain parenchyma (Figure 4). Brain metastatic cells also
produce specific serpin protease inhibitors to prevent L1CAM cleavage by astrocyte-derived
plasminogen activator (PA) [84]. High expression of serpin B2 and neuroserpin correlates with
lower brain metastasis-free survival in patients with lung adenocarcinoma [84]. Integrins also play
a crucial role in mediating brain metastatic cell spreading and angiogenesis [85,86]. Human lung
adenocarcinoma and murine myeloma cells that reached mouse brain tissue and failed to
establish required b1 integrin mediated adhesion to the vascular basement membrane were less
efficient at forming overt brain metastasis [87,88].

Metastatic cancer cells encounter a variety of resident cell types in the brain parenchyma.
Astrocytes can provide a growth-permissive microenvironment for infiltrated cancer cells, first,
however, cancer cells must evade astrocyte-induced cell death. In xenograft models of brain
metastasis, activated astrocytes overexpress the proapoptotic cytokine Fas ligand (FasL/
FASLG) and release it from a membrane-anchored form by the action of PA to kill infiltrated
metastatic cells. Brain metastatic cells express anti-PA serpins that shield cancer cells from
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PA-released FasL [84]. The surviving cancer cells can induce astrocytes to establish Notch
signaling [25] and endothelin production, which favor metastasis in experimental systems
[89,90]. Conversely, cancer cells can increase the density of astrocytes by promoting the
differentiation of neural progenitor cells towards the astrocyte lineage [91] (Figure 4).

The contribution of other brain cells, including oligodendrocytes, pericytes, microglia, and neurons,
is less well defined. Although brain metastatic cells need to neutralize cytotoxic microglia signals,
microglia infiltration correlates with metastatic progression [81,92]. Brain metastatic cells may
upregulate GABA (g-amino butyric acid) transporters and utilize neuron-released GABA neuro-
transmitter as a metabolite, supporting outgrowth in the brain [93] (Figure 4).

The WNT pathway was identified to support colonization of brain and bone by KRAS (Kirsten rat
sarcoma viral oncogene homolog)-mutant and EGFR-mutant human lung adenocarcinoma cells
[20]. Clinically, a specific WNT-responsive gene signature is associated with metastatic relapse
in lung adenocarcinoma patients [20]. Two WNT-regulated genes, LEF1 (lymphoid enhancer-
binding factor 1) and HOXB9 (homeobox B9), were specifically implicated in metastatic cell
invasiveness and colony formation [20]. Brain metastases in patients show upregulation of WNT
target genes [94].

Liver Metastasis
The liver is the most common site of distant metastasis in solid tumors. Gastrointestinal cancers
such as CRC, pancreatic cancer, and tumors of the gallbladder, which are drained by the
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enterohepatic circulation, reach the liver first. As such, the liver provides a large number of cancer
cells with ample opportunity to arrest, extravasate, and colonize the hepatic parenchyma [22].
Indeed, a recent study found a higher number of circulating CRC cells in the portal venous blood
than in the peripheral blood, suggesting that a significant percentage of tumor cells are trapped
in the liver [95]. Other primary tumors that metastasize to the liver include lung and breast
cancers [4,5]. Uveal (ocular) melanoma almost exclusively relapses in the liver, providing a clear
indication that, beyond circulation patterns, particular compatibilities of metastatic cells with the
host stroma also count in organ-specific metastasis [96].

In contrast to the vessels in the brain or the lungs, the hepatic vasculature is fenestrated
(sinusoidal endothelium) and lacks an organized subendothelial basement membrane. There-
fore, cancer cell extravasation is less restricted in the liver than it is in the brain or the lungs, as
shown in quantitative cell tracking studies in mice [12]. However, the liver parenchyma is rich in
cells of the innate immune system, potentially posing a obstacle to cancer cells. Indeed, the
neutralization of proapoptotic TRAIL on resident natural killer cells in the liver increases experi-
mental metastasis [97] (Figure 5).

Particular liver parenchyma cell types favor metastatic outgrowth (Figure 5). In experimental
models, claudin 2-mediated cell–cell interactions between breast cancer cells and hepatocytes
led to induction of c-Met (MET proto-oncogene, receptor tyrosine kinase) and stimulate
metastasis to the liver [98]. In an allograft model, exosome vesicles released by murine
pancreatic ductal adenocarcinoma cells caused TGF-b secretion, stimulated fibronectin pro-
duction by hepatic stellate cells, and triggered recruitment of bone marrow-derived
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macrophages [99]. The macrophage migration inhibitory factor (MIF) was highly enriched in
murine and human pancreatic cancer exosomes, and its blockade inhibited metastasis in the
mice [99] (Figure 5). CRC and lung cancer cells mobilize myeloid cell populations through soluble
factors, such as CCL2 (chemokine C-C motif ligand 2) or IL-6, that promote liver metastasis
[100,101] (Figure 5).

Some cancer cells express the glycosyltransferases St6GalnAc4 and C2GnT2, which alter the
glycosylation of a galectin 3 ligand on tumor cells and thereby increase interaction with galectin 3
expressed on myeloid cells [101] (Figure 5). Clinically, aberrant glycosylation and high galectin 3
levels are associated with metastatic progression [101,102]. Another significant case of meta-
static interaction with the hepatic microenvironment is provided by CRC stem cells. The cells are
often unresponsive to TGF-b owing to mutations that disable the TGF-b receptors or the SMAD
(SMA/mothers against decapentaplegic) signal-transducer proteins. However, these cells abun-
dantly secrete TGF-b, which enhances metastasis formation in the liver by activating a paracrine
loop with production of IL-11 from stromal fibroblasts. IL-11 then activates STAT3 (signal
transducer and activator of transcription 3) signaling in CRC stem cells to support their survival
in the liver [27] (Figure 5).

Proliferating cancer cells in the liver have high biosynthetic demands and compete with
hepatocytes for glycolytic substrates. In vivo screens identified two microRNAs (miR-551a
and miR-483) that were downregulated in liver-tropic CRC cells, leading to increased expression
of the brain-type creatine kinase CKB [103]. The cancer cells benefit from high levels of creatine
in the liver, which CKB converts into phosphocreatine that the CRC cells import for their
bioenergetic needs [103] (Figure 5).

Concluding Remarks
Genomics and other systems-level approaches, combined with extensive work in experimental
models, have started to shed light on the traits of cancer cells, the composition of stromal niches,
and the interaction between cancer cells and these niches that increase the probability of overt
colonization of a specific organ by cancer cells from different tumors of origin. However, many
questions remain open (see Outstanding Questions).

The manifestation of organ-specific metastasis can take months to decades and is the result of
multiple different traits that each provide a small advantage to individual cancer cells to survive
and thrive. Despite physical barriers that need to be overcome, the arrival in a distant organ does
not seem to be the most-limiting factor. Tumor cells can be found in the blood in early-stage
cancer [104], in some cases even before tumors are overtly invasive [105–107]. Notably, even
non-transformed epithelial stem cells are able to infiltrate and survive in the lung when injected in
large numbers into the circulation [108]. It remains unknown whether cancer cells that leave the
primary site very early during tumor progression are able to initiate clinically-manifest metastasis
or whether cancer cells that leave the primary tumor later during tumor progression stand a
better chance.

Disseminated tumor cells can survive for decades after surgical resection of a tumor. Latent
cancer cell populations may reside in specialized protective niches in the bone marrow or in other
organs, as suggested by cases in which recipients of liver, kidney, or heart transplant developed
metastasis from dormant cancer cells carried by the donor organ [109–111]. The identification of
mediators of cancer cell survival during metastatic dormancy is of interest because targeting
such mediators with adjuvant therapy could prevent overt metastasis. However, one of the most
limiting steps of the metastatic cascade appears to be the transition from infiltration of an organ
to overt colonization, which involves the evasion of organ-derived detrimental signals and the
exploitation of organ-derived survival signals.

Outstanding Questions
When and where do the traits for
organ-specific metastasis arise – in
the primary tumor or at the distant
organ site?

What is the origin of these metastatic
traits – genetic or epigenetic?

Do metastatic cells utilize different
niches for their initial survival on arrival,
for dormancy, and for aggressive
outgrowth?

What gives cancer cells the ability to
enter a dormant state for up to several
years while retaining tumor-initiating
capacity?

What are the signals that allow cancer
cells to exit dormancy and reactivate
their proliferative programs?

How do cancer cells acquire metastatic
traits for organ colonization during the
dormant state?

Are organs that serve as sanctuary
sites for dormant metastatic cells the
same organs as those in which overt
metastasis eventually emerges?

Are the mechanisms that support the
survival of cancer cells after extravasa-
tion related to those that support the
survival of residual cancer cells under
anticancer therapy?

What is the basis for the notorious
drug-resistance of metastatic cells in
distant organ microenvironments, such
as the brain?

Would therapeutic targeting of the
mechanisms that specifically support
the survival of dormant metastatic cells
prove an efficient strategy to prevent
metastasis?

Trends in Cancer, September 2015, Vol. 1, No. 1 87



Several of the mediators of organ-specific colonization, such as those involved in cancer cell
interactions with osteoblasts and osteoclasts, are only relevant to metastasis in that particular
organ site. However, many mediators of metastasis that were identified in studies on one or
another organ are not necessarily restricted to that particular organ. For example, periostin was
originally implicated in lung metastasis by breast cancer cells [67] but is also utilized by CRC cells
for liver metastasis [112]. Similarly, VCAM1 gives tumor cells in the lung a distinct survival
advantage by fostering interactions with macrophages [71], whereas in the bone marrow
VCAM1 mediates the interaction of tumor cells with myeloid osteoclast progenitors, promoting
their osteolytic expansion [28]. Other examples are COX2 and MMP1, which were initially shown
to be mediators of breast cancer cell extravasation in the lungs but also play a role in
extravasation through the blood–brain barrier [14,16,22,113,114].

Tumor heterogeneity, cancer cell plasticity, and complex cooperations between different cancer
clones provide additional challenges in the modeling, interpretation, and therapeutic intervention
of metastatic cancer [115,116]. Already at the primary site different cancer cell clones may
cooperate to sustain the growth of the tumor [117,118], and crosstalk between tumor cells
stimulates metastasis [119]. Collective invasion of multicellular clusters increases the survival and
metastatic efficiency of disseminated tumor cells in preclinical models [120], and multiclonal
seeding has been detected in prostate cancer patients [35,36].

Each of the steps of the metastatic cascade poses natural vulnerabilities of the cancer cells that
could be targeted to prevent overt metastasis and to improve the outcome of patients with
metastatic cancer. In a therapeutic setting, signals released by cancer cells under the stress of
targeted kinase therapy stimulate the proliferation and dissemination of drug-resistant cancer
cell minorities [121]. It is possible that the mechanisms that provide a survival benefit during the
crucial steps of metastasis may also increase the survival of cancer cells during drug treatment,
thus contributing to therapy resistance and disease progression. Future research must be
directed to identifying the most crucial mediators of metastatic colonization as therapeutic
targets. The most valuable of these targets might well be those that mediate not organ-specific
metastasis, but multi-organ metastasis.
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