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Therapy-induced tumour secretomes promote
resistance and tumour progression
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Drug resistance invariably limits the clinical efficacy of targeted
therapy with kinase inhibitors against cancer1,2. Here we show that
targeted therapy with BRAF, ALK or EGFR kinase inhibitors induces
a complex network of secreted signals in drug-stressed human and
mouse melanoma and human lung adenocarcinoma cells. This
therapy-induced secretome stimulates the outgrowth, dissemination
and metastasis of drug-resistant cancer cell clones and supports the
survival of drug-sensitive cancer cells, contributing to incomplete
tumour regression. The tumour-promoting secretome of melanoma
cells treated with the kinase inhibitor vemurafenib is driven by down-
regulation of the transcription factor FRA1. In situ transcriptome
analysis of drug-resistant melanoma cells responding to the regres-
sing tumour microenvironment revealed hyperactivation of several
signalling pathways, most prominently the AKT pathway. Dual inhi-
bition of RAF and the PI(3)K/AKT/mTOR intracellular signalling
pathways blunted the outgrowth of the drug-resistant cell popula-
tion in BRAF mutant human melanoma, suggesting this combina-
tion therapy as a strategy against tumour relapse. Thus, therapeutic
inhibition of oncogenic drivers induces vast secretome changes in
drug-sensitive cancer cells, paradoxically establishing a tumour micro-
environment that supports the expansion of drug-resistant clones,
but is susceptible to combination therapy.

Kinase inhibitors such as vemurafenib, erlotinib or crizotinib have
shown clinical efficacy in melanoma with BRAF mutations, or in lung
adenocarcinoma with EGFR mutations or ALK translocations, respec-
tively3–6. Although complete responses are rare, the vast majority of
patients show partial tumour regression or disease stabilization. How-
ever, drug resistance invariably develops, and most patients progress
within 6–12 months3–16, representing a common complication of tar-
geted therapies that hampers long-term treatment success. The rapid
emergence of clinical drug resistance may be facilitated by a small num-
ber of pre-existing cancer cells that are intrinsically resistant or poised
to adapt to drug treatment quickly17–19. How these minority clones of
drug-resistant cells react to the marked changes in the microenviron-
ment during tumour regression is not known. A better understanding
of this process could lead to treatments that improve the efficacy of cur-
rent targeted anti-cancer drugs.

To model therapeutic targeting of heterogeneous tumour cell popu-
lations in vivo, we mixed a small percentage of vemurafenib-resistant
A375 human melanoma cells (A375R), labelled with a TK-GFP-luciferase
(TGL) vector, together with mostly non-labelled, vemurafenib-sensitive
A375 cells, and injected the admixture (A375/A375R, 99.95/0.05%) sub-
cutaneously in mice (Extended Data Fig. 1a). After the tumours were
established, we treated the mice with vemurafenib or vehicle, and mon-
itored the growth of resistant cells by bioluminescent imaging (BLI)
in vivo (Fig. 1a). Although vemurafenib treatment decreased the vol-
ume of sensitive tumours (A375 alone) (Extended Data Fig. 1b), the

number of admixed resistant cells in regressing tumours (A375/A375R)
significantly increased compared to vehicle-treated controls (Fig. 1b).
Green fluorescent protein (GFP) staining confirmed increased num-
bers of resistant cells in regressing tumours, and EdU or BrdU staining
confirmed their increased proliferation rate compared to the vehicle-
treated controls (Fig. 1c and Extended Data Fig. 1c, d). Tumours com-
prising only resistant cells showed no growth difference when treated
with vehicle or vemurafenib (Fig. 1d), indicating that the growth advan-
tage of resistant cells in regressing tumours was not caused by direct
effects of vemurafenib on cancer or stromal cells.

Treatment of mixed A375 and A375R tumours with dabrafenib, an-
other BRAF inhibitor (RAFi), or doxycycline-induced knockdown of
BRAF had similar effects (Extended Data Fig. 1e–g). In line with these
findings, A375R cells co-implanted with other vemurafenib-sensitive
melanoma cell lines (Colo800, LOX and UACC62) also showed an up
to eightfold growth increase compared to vehicle-treated control groups
(Fig. 1e). Growth acceleration of the resistant population in a regressing
tumour was also observed in the patient-derived8 melanoma cell line
M249 and its vemurafenib-resistant derivative M249R4, driven by an
NRAS mutation, a clinically relevant resistance mechanism (Fig. 1e and
Extended Data Fig. 1h). In immunocompetent mice, vemurafenib treat-
ment of tumours formed by melanoma cell lines derived from
BrafV600E Cdkn2a2/2 Pten2/2 mice (YUMM1.1, YUMM1.7) also pro-
moted growth of the admixed vemurafenib-resistant cells (YUMM1.7R,
B16) (Extended Data Fig. 1i, j).

Crizotinib- or erlotinib-treated mice containing tumours formed by
ALK-driven (H3122) or EGFR-driven (HCC827) human lung adeno-
carcinoma cells, respectively, admixed with minority clones of intrins-
ically resistant cells from the same cell lineage (lung adenocarcinoma
cells H2030 and PC9) or melanoma cells (A375R) also led to increased
outgrowth of the resistant cells (Fig. 1e and Extended Data Fig. 1k–m).
Local growth acceleration of resistant cells in the regressing subcutan-
eous tumours resulted in higher lung metastatic burden (Fig. 1f). Thus,
drug-resistant cancer cells benefit from therapeutic targeting of sur-
rounding drug-sensitive cells.

Circulating tumour cells can infiltrate and colonize tumours. This
phenomenon, termed self-seeding20, may contribute to the distribution
of resistant clones to several metastatic sites. Mice implanted with sen-
sitive A375 tumours were treated with vehicle or vemurafenib, and in-
tracardially injected with TGL-labelled A375R cells (Fig. 1g). A375R cells
were more efficiently attracted to vemurafenib-treated regressing tumours
compared to vehicle-treated controls, with 95% (21 out of 22) and 12.5%
(2 out of 16) efficiency, respectively, exhibiting substantial accumulation
of resistant cells in regressing tumours by day 5 (Fig. 1g and Extended
Data Fig. 1n). To evaluate the contribution of seeding by resistant cir-
culating tumour cells to disease relapse, we intracardially injected re-
sistant A375R cells or vehicle into tumour-bearing mice and compared
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the tumour volume during vemurafenib treatment (Fig. 1h). Whereas
the unseeded tumours in the control group showed extensive tumour
regression, seeding by A375R cells led to rapid tumour relapse (Fig. 1h).
These results suggest that tumours regressing on targeted therapy are
potent attractors of resistant circulating tumour cells that may contri-
bute to rapid tumour progression.

Tumours consist of a complex microenvironment composed of im-
mune, stromal and cancer cells21. Soluble mediators from this micro-
environment can foster cancer growth and therapy resistance13,14,22–24.
Considering that drug-sensitive cancer cells are the main population
affected by targeted therapy, we proposed that signals derived from sen-
sitive cancer cells in response to kinase inhibitors drive the outgrowth
of drug-resistant cells. To test this hypothesis, we established an in vitro
co-culture system and monitored the growth of TGL-expressing res-
istant cells (A375R, H2030) in the absence or presence of sensitive cells
treated with kinase inhibitors or vehicle (Fig. 2a). Mimicking our
in vivo findings, co-culture with vemurafenib-, crizotinib- or erlotinib-
treated sensitive cells significantly enhanced the growth of resistant can-
cer cells (Fig. 2a and Extended Data Fig. 2a–c).

We derived conditioned media (CM) from vemurafenib-sensitive
melanoma cells cultured in the absence (CM-vehicle) or presence of
vemurafenib (CM-vemurafenib). CM-vemurafenib accelerated the prolif-
eration of drug-resistant cells, with different clinically relevant resistance
mechanisms, as determined by cell viability assays and Ki67 staining
(Fig. 2b and Extended Data Fig. 2d–f). Similarly, conditioned media
from crizotinib- or erlotinib-treated sensitive lung adenocarcinoma cells
stimulated proliferation of lung adenocarcinoma cells with intrinsic or

acquired resistance (Fig. 2c) and across different cell lineages (Extended
Data Fig. 2g). In addition, CM-vemurafenib elicited increased cell mi-
gration in transwell migration and monolayer gap-closing assays (Fig. 2d
and Extended Data Fig. 2h–k). CM-vemurafenib was also active on
vemurafenib-sensitive cancer cells, increasing survival and suppressing
the apoptotic caspase activity up to 100-fold in these cells when treated
with vemurafenib in vitro (Fig. 2e, f). Because all biologically active con-
ditioned media was collected before cell death or senescence, it is likely
that the secretome is actively produced as a result of oncogene inhibi-
tion (Extended Data Fig. 2l, m). These results demonstrate that BRAF,
ALK and EGFR mutant cells respond to therapeutic stress under tar-
geted therapy by secreting factors that support the survival of drug-
sensitive cells and accelerate the growth of drug-resistant minority clones.
The effects of this reactive secretome may augment previously reported
resistance mechanisms including relief of feedback inhibition of intra-
cellular signalling11,25, upregulation of receptor tyrosine kinases26, or
the supply of stromal cytokines14 that protect the drug-sensitive cells.

To identify relevant components and regulators of the reactive se-
cretome, we analysed gene expression changes in sensitive A375 mel-
anoma cells at different time points after vemurafenib exposure in vitro.
After 6 h on vemurafenib, 473 genes showed altered expression, and
pathway analysis revealed that these genes were enriched for transcrip-
tional regulators (Fig. 3a, b, Extended Data Fig. 3a, b and Supplemen-
tary Table 1). After 48 h, more than one-third of the transcriptome was
differentially expressed (.5,000 genes; 405 genes encoding for proteins
in the extracellular region, Gene Ontology (GO) accession 0005576),
significantly overlapping with the gene expression changes of A375
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Figure 1 | The regressing tumour
microenvironment stimulates the outgrowth,
infiltration and metastasis of drug-resistant
clones. a, Schematic of the experimental set-up.
b, Bioluminescent signal of drug-resistant A375R-
TGL cells in vemurafenib-sensitive, A375 tumours,
treated with vehicle or vemurafenib for 5 days
(vehicle, n 5 36; vemurafenib, n 5 15 tumours).
D, day. c, EdU incorporation in A375R-TGL cells in
A375/A375R-TGL tumours treated with vehicle or
vemurafenib for 4 days, as determined by FACS
(vehicle, n 5 8; vemurafenib, n 5 6 tumours).
d, Bioluminescent signal of A375R-TGL tumours
alone, treated with vehicle or vemurafenib for
5 days (vehicle, n 5 38; vemurafenib, n 5 15
tumours). e, Bioluminescent signal of TGL-
expressing drug-resistant cancer cells (A375R,
M249R4, PC9 and H2030) in drug-sensitive
tumours (Colo800, LOX, UACC62, M249, H3122
and HCC827) treated with vehicle or drugs
(vemurafenib, crizotinib and erlotinib) for 5 days
(n (from left to right on the graph) 5 6, 7, 12, 12, 9,
9, 25, 26, 9, 12, 12, 12, 16 and 11 tumours).
f, Spontaneous lung metastasis by A375R cells in
mice bearing A375/A375R-TGL tumours treated
with vehicle or vemurafenib (10 days), visualized
by BLI (n 5 4). g, Seeding of A375R-TGL cells from
the circulation to unlabelled, subcutaneous (SC)
A375 tumours of mice treated with vehicle or
vemurafenib. Signal in the tumour was quantified
by BLI (vehicle, n 5 30; vemurafenib, n 5 34
tumours; three independent experiments
combined). IC, intracardiac. h, Treatment
response, determined by tumour size, of
subcutaneous A375 tumours allowed to be seeded
by A375R-TGL cells from the circulation or mock
injected (vehicle, n 5 16; vemurafenib, n 5 8
tumours). Data in b–e, g, h are mean and s.e.m;
in f the centre line is median, whiskers are
minimum and maximum values. *P , 0.05,
**P , 0.01, ***P , 0.001, two-tailed Mann–
Whitney U test. NS, not significant.
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Figure 2 | The secretome of RAF and ALK inhibitor-treated tumour cells
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tumours in vivo after 5 days of vemurafenib treatment (Fig. 3a, b and
Extended Data Fig. 3c). Similar extensive gene expression changes
were observed in Colo800 and UACC62 melanoma cells treated with
vemurafenib and H3122 lung adenocarcinoma cells treated with cri-
zotinib (Extended Data Fig. 3d). Despite different cell lineages, differ-
ent oncogenic drivers, and different targeted therapies we observed a
significant overlap between the secretome of melanoma and lung ade-
nocarcinoma cells (P , 9.11 3 1025) (Extended Data Fig. 3e–h and
Supplementary Table 1). Furthermore, changes in the secretome of
vemurafenib-sensitive melanoma cells coincided with changes in the
immune cell composition (Extended Data Fig. 4a, b), and with changes
of soluble mediators derived from murine stromal cells such as IGF1
and HGF (Extended Data Fig. 4c, d). These data indicate a therapy-
induced secretome (TIS), a response that consists of many up- and
downregulated secreted factors, permeates the regressing tumour mi-
croenvironment and stimulates cancer cells, probably also stromal cells.

To identify molecular drivers of the A375-TIS in response to vemur-
afenib, we integrated the data of differentially expressed transcription
factors after 6 h of vemurafenib treatment with the transcription factor
binding motifs that were enriched at the promoters of differentially
expressed genes in the secretome after 48 h (Fig. 3a, b). This analysis
highlighted FRA1 (also known FOSL1), a member of the AP1 tran-
scription factor complex and effector of the ERK pathway27, as one of
the putative upstream regulators of the TIS (Extended Data Fig. 5a).
FRA1 was downregulated in all drug-sensitive cells, but not in resistant
cells, treated with vemurafenib, crizotinib and erlotinib (Fig. 3c, d and
Extended Data Fig. 5b–d). Biopsies from melanoma patients early during
RAFi treatment confirmed RAFi-induced FRA1 downregulation in clin-
ical samples (Fig. 3e, Extended Data Fig. 5e and Extended Data Table 1).

To test the functional role of FRA1 in modulating the TIS, we used
RNA interference (RNAi) to inhibit FRA1 expression. Co-culture and
conditioned media assays using A375 cells expressing short hairpin

RNAs targeting FRA1 (shFRA1) showed similar growth-accelerating and
chemotactic activity on A375R cells as vemurafenib treatment (Extended
Data Fig. 6a–d). In line with these results, FRA1 knockdown in A375
cells induced transcriptional changes similar to those induced by vemur-
afenib (Extended Data Fig. 6e). A375R cells co-implanted with A375 or
UACC62 cells expressing shFRA1 also demonstrated increased growth
in vivo (Fig. 3f and Extended Data Fig. 6f). A375-shFRA1 tumours
attracted significantly more resistant cells from the circulation than
tumours expressing the control vector (Fig. 3g). Thus, FRA1 down-
regulation drives the induction of the tumour-promoting secretome of
vemurafenib-treated cancer cells.

To determine the effect of the reactive secretome on the drug-
resistant tumour subpopulation in a regressing tumour, we expressed
the ribosomal protein L10a (RPL10a) fused to enhanced green fluor-
escent protein (eGFP–RPL10a) in A375R cells, allowing the specific
retrieval of transcripts from A375R cells by polysome immunopreci-
pitation for subsequent RNA-sequencing (RNA-seq) analysis28 (Fig. 4a).
In line with the in vivo phenotype of accelerated growth, the gene ex-
pression pattern of resistant cells in the regressing microenvironment
was enriched for biological processes involved in cell viability, prolif-
eration and cell movement (Extended Data Fig. 7a). Pathway analysis
of the expression data suggested activation of several pathways includ-
ing PI(3)K/AKT, BMP-SMAD and NFkB (Fig. 4b). The hyperactivity
of the PI(3)K/AKT pathway in this context also suggested a potential
vulnerability of the cells to PI(3)K/mTOR inhibitors (Extended Data
Fig. 7b). The pathway-analysis-based prediction of PI(3)K/AKT activa-
tion was also reflected at the protein level in both resistant and sensitive
cells in the presence of CM-vemurafenib in vitro and under vemur-
afenib treatment in vivo (Fig. 4c and Extended Data Fig. 7c, d). More-
over, PI(3)K/AKT emerged as the dominant TIS responsive pathway
in a targeted immunoblot analysis of survival pathways in vitro (Ex-
tended Data Fig. 7e).
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Figure 4 | The therapy-induced secretome in melanoma promotes relapse
by activating the AKT pathway in resistant cells. a, Schematic diagram
showing the isolation of polysome-associated transcripts from resistant cells by
translating ribosome affinity profiling (TRAP) from tumours during treatment.
IP, immunoprecipitation. b, Ingenuity upstream regulator analysis of gene
expression profiles from A375R cells responding to a regressing tumour
microenvironment (5 days of treatment; n 5 3 tumours). c, Phosphorylation
status of AKTS473 (pAKT) in A375R cells, stimulated for 15 min with various
conditioned media, as indicated by immunoblotting. tAKT, total AKT.
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positive regulators of the AKT pathway, upregulated in the melanoma TIS;
ANGPTL7 (5mg ml21, 30 min; upregulated in A375, Colo800, UACC62),
PDGFD (10 ng ml21, 10 min; upregulated in Colo800), EGF (10 ng ml21,
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The TIS contained many mediators directly or indirectly activating
the AKT pathway. Positive mediators that were upregulated during
therapy included IGF1, EGF, ANGPTL7 and PDGFD, each of which
activated the AKT pathway in vitro (Fig. 4d). IGF1, one of the most
potent activators of the AKT pathway, is also abundantly expressed in
the tumour stroma and is further upregulated during targeted therapy
(Extended Data Figs 4c and 7f). In addition, levels of IGFBP3, a nega-
tive regulator of IGF1, were markedly reduced in the TIS of all inves-
tigated cell lines, favouring increased AKT pathway activation in the
presence of IGF1 and stimulation of proliferation of resistant cells
in vivo (Extended Data Fig. 7f–k).

To test the role of AKT activation as a mediator of TIS-induced tu-
mour proliferation, we combined vemurafenib with AKT/PI(3)K/mTOR
inhibitors. In co-culture and proliferation experiments using condi-
tioned media, dual inhibition of the MAPK and AKT pathway dimin-
ished the growth benefit of the TIS (Extended Data Fig. 8a, b). We then
treated mice with A375/A375R or A375R tumours with vemurafenib
and AKT (MK2206) or PI(3)K/mTOR inhibitors (BEZ235). The com-
bined inhibition of MAPK and PI(3)K/AKT/mTOR pathways signifi-
cantly blunted the outgrowth of vemurafenib-resistant cells in the A375/
A375R tumours (Fig. 4e). The growth inhibition was specific for the
amplified proliferation in the regressing tumour microenvironment and
had no effects on the growth of resistant cells alone (Extended Data
Fig. 8c). Furthermore, the outgrowth of resistant A375R cells in tumour
seeding assays was significantly reduced when regressing tumours
were co-treated with BEZ235 (Extended Data Fig. 8d). Thus, the
TIS-induced proliferation is susceptible to therapeutic targeting.

The limited effectiveness of targeted therapies has been attributed to
intracellular feedback loops and specific cytokines that support the
survival of drug-sensitive cells. From these residual tumours, clones
emerge that are intrinsically resistant to targeted therapy and are ulti-
mately responsible for clinical relapse. Our work demonstrates that
targeted inhibition of a cancer driver pathway can paradoxically pro-
mote these two aspects of drug resistance via induction of a complex,
reactive secretome. This TIS not only enhances the survival of drug-
sensitive cells, but also acutely accelerates the expansion and dissemi-
nation of drug-resistant clones. Rather than a cell death by-product29,30,
the TIS is a live-cell response to inhibition of an oncogenic driver path-
way, mediated by a concrete transcriptional program, and defined by
specific alterations of intracellular signalling networks (Fig. 4f).

Our identification of AKT signalling as a mediator of TIS-induced
tumour progression in BRAF-driven melanoma is in line with AKT acti-
vation in tumours observed in the clinic during vemurafenib treatment16.
Patients treated with BRAF inhibitor rarely show full tumour regres-
sion3,4, and the remaining drug-responsive tumour cells may remain a
source of TIS for the duration of the treatment. Our results provide a
rationale for combining PI(3)K/AKT/mTOR pathway inhibitors with
inhibitors of the MAPK pathway in the treatment of these tumours.
However, the breadth of the TIS and the generality of our findings
across different cell lineages, drugs (vemurafenib, crizotinib and erlo-
tinib), and resistance mechanisms suggest that durable responses may
require the combination of this type of agents with a radically different
therapeutic modality.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Cell culture. A375, M249 (ref. 8) and B16 cells were cultured in DMEM media;
Colo800, UACC62, SKMEL239-clone3, LOX, PC9, H2030, H3122 and HCC827
cells were cultured in RPMI media. YUMM1.1 and YUMM1.7 were cultured in
DMEM/F12 media. GPG29 and 293T cells were used for retrovirus and lentivirus
production, respectively. Both were maintained in DMEM media. All media contained
10% FBS, 2 mM L-glutamine, 100 IU ml21 penicillin/streptomycin and 1mg ml21

amphotericin B, the media for GPG29 contained in addition 0.3 mg ml21 G418,
20 ng ml21 doxycycline and 2mg ml21 puromycin. All cells were grown in a humid-
ified incubator at 37 uC with 5% CO2 and were tested regularly for mycoplasma
contamination. All cell lines used were negative for mycoplasma.

To generate vemurafenib-resistant melanoma cell lines, vemurafenib-sensitive
cell lines were seeded at low density and exposed to 1–3mM vemurafenib (LC-Labs).
After approximately 8 weeks of continuous vemurafenib exposure, we derived re-
sistant cell clones that were maintained on vemurafenib (1mM vemurafenib for
M249R4, Colo800R, LOXR, UACC62R; 2mM vemurafenib for A375R, YUMM1.7R).
The same protocol was performed to generate a crizotinib-resistant cell line from
H3122 lung adenocarcinoma cells, which were selected and maintained with 300 nM
crizotinib. Drug-sensitive and resistant melanoma cell lines from A375, Colo800,
UACC62 and YUMM1.7 and the drug sensitive lung adenocarcionoma cell lines
H3122 and HCC827 were exposed to increasing doses of vemurafenib and the
number of cells was determined after 3 days and pERK levels after 1 h of vemur-
afenib, crizotinib or erlotinib exposure (Extended Data Fig. 9a–j). Receptor status
was determined by western blot and showed an increase in EGFR expression levels
in all resistant lines examined as well as an increase in MET receptor expression in
A375R and UACC62R cells compared to their parental, drug-sensitive cells (Ex-
tended Data Fig. 9k).

For co-culture assays sensitive cells were plated in 12-well or 24-well plates and
allowed to adhere overnight in regular growth media. Media was then replaced with
low serum (2% FBS) media containing vehicle, 0.1mM vemurafenib, 0.3mM cri-
zotinib or 0.01mM erlotinib. For control wells media containing vehicle or 0.1mM
vemurafenib, 0.3mM crizotinib, or 0.01mM erlotinib was plated at the same time.
After 48 h, TGL-expressing, resistant cells were plated on top of the vehicle/drug
treated cells or in media-only control wells. Media containing vehicle/drug was re-
plenished every 48 h. After 7 days, luciferin [150mg ml21] was added to the wells
and luciferase-signal of resistant cells was determined by BLI using a Xenogen Spec-
trum imaging machine (Perkin Elmer). Co-culture experiments were independently
performed at least twice and a representative experiment is shown.

To generate conditioned media, 2.3 3 106 and 6.4 3 106 drug-sensitive cells were
plated on 15-cm dishes in regular growth media and allowed to adhere overnight.
The media was then replaced by low serum media containing vehicle or vemur-
afenib (0.1mM for A375 cells, 1 mM for all other cell lines), on dishes containing
2.3 3 106 and 6.4 3 106 drug-sensitive cells, respectively. The same procedure was
followed for generation of conditioned media from H3122 (crizotinib, 0.3 or 1mM)
or HCC827 (erlotinib 0.01mM) lung adenocarcinoma cells. After 72 h, cells on both
plates had reached equal confluency of ,80% and conditioned media was collected,
centrifuged at 1,000 r.p.m. for 5 min, filtered, and aliquots were stored at 280 uC
until further use. Key proliferation and migration experiments yielded the same
results when performed with conditioned media in which the same number of
drug-sensitive cells (3.2 3 106) was plated initially, which resulted in higher cell con-
fluency in the vehicle-treated dish at time of conditioned media collection.
Proliferation, survival and apoptosis assays. Around 1,000–3000 cells were pla-
ted in a 96-well plate, allowed to adhere overnight, and then incubated with either
fresh or conditioned media containing vemurafenib or additional drugs as indicated.
After 72 h, the number of cells was determined using a CelltiterGlo assay and the
caspase 3/7 activity using a CaspaseGlo assay (Promega) according to the manu-
facturer’s instructions. Caspase 3/7 activity was normalized to the number of cells
present. All experiments with melanoma test cells and melanoma conditioned media
were performed at least three times, experiments with lung adenocarcinoma cell
lines were performed at least twice. Representative experiments are shown.
Boyden chamber transwell migration assay/gap closure assay. Transwell migra-
tion assays were performed as described previously with minor modifications31. In
brief, serum-starved cells (0.2% FBS, overnight) were labelled with cell tracker green
(Invitrogen) for 30 min at 37 uC and allowed to recover for 1 h. Cells (25,000–
50,000) were then seeded onto membrane inserts with 8-mm pores and fluorescence
blocking filters (Falcon). The number of cells migrated through the pores of the
membrane was scored after 5–24 h using an Evos microscope (AMG). Gap closing
assay was performed according to standard protocols. In brief, cells were seeded
and grown until confluent. A tip was used to generate a gap, cells were washed and
conditioned media was added. Images were acquired over time to monitor for cap
closure in different conditions. All experiments were performed independently at
least twice. Representative experiments are shown.

xCELLigence migration assay. Experiments were performed using the
xCELLigence RTCA DP instrument (Roche Diagnostics GmbH) placed in a humid-
ified incubator at 37 uC with 5% CO2. Cell migration experiments were performed
using modified 16-well plates (CIM-16, Roche Diagnostics GmbH) according to
the manufacturer’s instructions. The experiment was performed twice. A repres-
entative experiment is shown.
Animal studies. All experiments using animals were performed in accordance to
our protocol approved by MSKCC’s Institutional Animal Care and Use Committee
(IACUC). 5–7-week-old, female NOD-SCID NCR (NCI) or athymic NCR-NU-
NU (NCI) mice were used for animal experiments with human cell lines. Primary
YUMM1.1 and YUMM1.7 cell lines were isolated from melanomas developed in
mice (Tyr::CreER; BrafCA; Cdkn2a2/2 Ptenlox/lox) treated with 4-hydroxytamoxifen
and were subsequently implanted in female C57BL/6J (JAX) mice aged between
5 and 7 weeks. Tumour formation, outgrowth and metastasis were monitored by
BLI of TGL-labelled tumour cells as described previously22. In brief, anaesthetized
mice (150 mg kg21 ketamine, 15 mg kg21 xylazine or isoflurane) were injected retro-
orbitally with D-luciferin (150 mg kg21) and imaged with an IVIS Spectrum Xenogen
machine (Caliper Life Sciences). Bioluminescence analysis was performed using
Living Image software, version 4.4. For co-implantation assays, mice were anaes-
thetized (150 mg kg21 ketamine, 15 mg kg21 xylazine) and 1 3 103 TGL-labelled
resistant tumour cells were injected subcutaneously with 2 3 106 sensitive tumour
cells in 50ml growth-factor-reduced Matrigel/PBS (1:1) (BD Biosciences). For the
control groups in which the effects of drug treatment on resistant cells alone were
tested, 2 3 106 resistant cells were injected in growth-factor-reduced Matrigel/
PBS. Two-to-four sites on the flanks were injected per mouse. After tumours
reached a size of 50–150 mm3, the BLI signal of resistant cells was determined. To
compensate for minor growth differences of the GFP1 resistant cell population
between mice, the mice were assigned to the cohorts so that the overall BLI intensity
(and consequently the cell number) was equal in the treatment and control group.
Each group received vehicle or drug treatment as indicated (vemurafenib/PLX4032,
25 mg kg21 twice daily for YUMM1.1 and YUMM1.7 tumours, and 75 mg kg21 twice
daily for all other BRAF mutant tumours, LC-Labs or Selleckchem; 100 mg kg21

crizotinib once daily, LC-Labs; 50 mg kg21 erlotinib once daily, LC-Labs; 100 mg kg21

MK-2206 once daily, Chemietek; 50 mg kg21 BEZ235 once daily, LC-Labs). Growth
of the resistant population in the different groups was monitored by BLI, quantified
and normalized to BLI signal at start of treatment. Tumour seeding and metastasis
assays were performed as described with minor modifications20. In brief, sensitive
tumour cells were injected subcutaneously on two sites per mouse. Once tumours
were established (50–150 mm3) mice were treated with vehicle or vemurafenib
(75 mg kg21 twice daily) for 3 days, and 1 3 105 TGL-labelled drug-resistant cells
were injected in the left cardiac ventricle. Treatment was continued, and metastatic
burden and tumour seeding were determined in vivo and ex vivo by BLI. Tumour
volume was determined using caliper measurements and calculated using the fol-
lowing formula: tumour volume 5 (D 3 d2)/2, in which D and d refer to the long
and short tumour diameter, respectively. All experiments with A375 cells were in-
dependently performed at least three times, except animal experiments in Fig. 3,
which were performed twice. All other animal experiments were independently per-
formed at least twice. Representative experiments are shown, except where noted
and where instead the average of three experiments is presented.
Gene expression analysis. Whole RNA was isolated from cells using RNAeasy Mini
Kit (QIAGEN). The Transcriptor First Strand cDNA synthesis kit (Roche) was used
to generate cDNA. Differential RNA levels were assessed using Taqman gene
expression assays (Life technologies). Assays used for human genes are:
Hs04187685, Hs00365742, Hs00605382, Hs00601975, Hs01099999, Hs00959010,
Hs01029057, Hs00234244, Hs00905117, Hs00180842, Hs00989373, Hs00234140,
Hs00195591, Hs00207691, Hs99999141, Hs01117294, Mm00607939, Mm99999915
and Mm04207958. Relative gene expression was normalized to internal control genes:
B2M (Hs99999907_m1), GAPDH (Hs99999905_m1) and ACTB (Mm00607939_
s1). Quantitative PCR reactions were performed on a VIIA7 Real-Time PCR system
and analysed using VIIA7 software (Life Technologies). All data points represent at
least four technical replicates and experiments were performed independently three
times. A representative experiment is shown.
Cancer-cell-specific TRAP and sequencing. To investigate the gene expression
changes specifically of drug-sensitive tumours during vemurafenib treatment, or gene
expression changes of resistant cells exposed to a regressing tumour microenvi-
ronment, A375 and A375R cells, respectively, were modified to express eGFP-RPL10a.
Tumours derived from implanted A375-eGFP-RPL10a and A375R-eGFP-RPL10a
cells were homogenized and processed with the TRAP protocol as previously
described28,32,33 with the following modifications: fresh tumour was homogenized
with a Model PRO 200 homogenizer at speed 5 for four cycles of 15 s, RNasin Plus
RNase inhibitor (Promega, N2615) was used as RNase inhibitor, and anti-eGFP
antibody coated sepharose beads (GE Healthcare) were used for immunopreci-
pitation. Polysome-associated RNA was purified with RNAqueous micro kit (Life
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Technologies, AM1931). Ribogreen and the Agilent BioAnalyzer technologies were
used to quantify and control the quality of RNA; 500 ng RNA (RNA integrity num-
ber (RIN) . 8.5) from each sample was used for library construction with TruSeq
RNA Sample Prep Kit v2 (Illumina) according to the manufacturer’s instructions.
The samples were barcoded and run on a Hiseq 2000 platform in a 50-base-pair
(bp)/50-bp or 75-bp/75-bp paired-end run, using the TruSeq SBS Kit v3 (Illumina).
An average of 40 million paired reads was generated per sample.
RNA-seq analysis. For drug-sensitive A375, Colo800, UACC63 and H3122 cells,
in vitro, raw paired-end sequencing reads were mapped to the human genome (build
hg19) with STAR2.3.0e (ref. 34) using standard options. Uniquely mapped reads
were counted for each gene using HTSeq v0.5.4 (ref. 35) with default settings. Read
counts of each sample were normalized by library size using the ‘DESeq’35 package
of Bioconductor. Differential gene expression analysis between any two conditions
was performed based on a model using the negative binomial distribution35. Genes
with false discovery rate (FDR) , 0.05, fold change larger than 1.5 or smaller than
0.667-fold, and average read counts larger than 10 were treated as differentially
expressed genes. RNA-seq data from in vivo xenograft TRAP samples were pro-
cessed with the following modifications to avoid potential mRNA contamination
from host mouse tissue: raw sequencing reads were mapped to a hybrid genome
consisting indexes of both human (build hg19) and mouse (build mm9) genomes.
Only reads that uniquely mapped to human genome indexes were preserved and
counted using HTSeq v0.5.4 (ref. 35).
Bioinformatics analysis. Heatmap visualization of data matrices was performed
using the ‘gplots’ package of R. Principle component analysis of RNA-seq results was
performed with the variance stabilizing transformation methods in ‘DESeq’ package
of Bioconductor and the first two principal components were plotted. Volcano plots
were derived from ‘DESeq’-based differential gene expression analysis. Differentially
expressed genes with transcription factor activity (GO:00037000) at 6 h of vemur-
afenib treatment and gene products located in the extracellular region (GO:
00005576) at 48 h of vemurafenib treatment were identified using the Database for
Annotation, Visualization and Integrated Discovery (DAVID)36 v6.7 (http://david.
abcc.ncifcrf.gov/) and enriched GO terms were visualized using REVIGO37 (http://
revigo.irb.hr). Enriched transcriptional regulators for the list of differentially ex-
pressed gene products in the extracellular region were predicted with DAVID v6.7
and this list compared to the gene expression levels of transcription factors after
6 h of vemurafenib treatment in A375 cells. Upstream regulators, functions assoc-
iated with the gene expression profile and potential drug vulnerabilities were deter-
mined by interpretative phenomenological analysis (IPA) analysis on differentially
expressed genes from A375R-eGFP-RPL10a cells in different tumour microenvir-
onments in vivo.
Immunoblotting. RIPA buffer (Cell Signaling) was used for cell lysis, according to
the manufacturer’s instructions, and the protein concentrations were determined
by BCA Protein Assay kit (Pierce). Proteins were separated by SDS–PAGE using
Bis-Tris 4–12% gradient polyacrylamide gels in the MOPS buffer system (Invitro-
gen) and transferred to nitrocellulose membranes (BioRad) according to standard
protocols. Membranes were immunoblotted with antibodies against pERKT202/Y204

(4370), tERK (4696), pAKTS473 (4060), pAKTT308 (4056), tAKT (2920), EGFR
(4267), MET (8198), PDGFRb (3169), pFRA1 (3880), caspase3 (9662), pPRAS40T246

(13175), p70S6KT389 (9205), pFAKY397 (3283), pPKCbetaIIS660 (9371), pNFkBS536

(3033), pb-CateninS33/37/T41 (9561), pSTAT-3Y705 (9145), pSTAT-5C11C5 (9359),
pGSK3a/bS21/9 (9327), pCREBS133/pATF-1 (9196) (Cell Signaling, 1:1,000), FRA1
(sc-605, Santa Cruz Biotechnology, 1:200) and tubulin (T6074, Sigma-Aldrich,
1:5,000) in Odyssey blocking buffer (LI-COR). After primary antibody incubation,
membranes were probed with IRDye 800CW donkey-anti-mouse IgG (LI-COR)
or IRDye 680RD goat-anti-rabbit IgG (LI-COR) secondary antibody (1:20,000)
and imaged using the LI-COR Odyssey system. All immunoblots were performed
independently at least twice. Tubulin served as a loading control.
Plasmids, recombinant protein and ELISA. Identifiers for shRNAs used in this
study are: V3LHS-644610 (shFRA1-1), V3LHS-644611 (shFRA1-2), V3LHS-320021
(shIGFBP3-1) and V2LHS-111629 (shIGFBP3-2) (Dharmacon, GE Lifesciences).
IGFBP3 ELISA (Raybiotech) was performed according to the manufacturer’s in-
structions with 50mg tumour lysate and conditioned media was diluted 1:5. Recom-
binant proteins were used at the following conditions: 10 ng ml21 IGF1 (Invitrogen),
10 ng ml21 EGF (Invitrogen), 10 ng ml21 PDGFD (R&D Systems), 2mg ml21

IGFBP3 (Prospec) for 15 min, or 5mg ml21 ANGPTL7 (R&D Systems) for 30 min.
Patient samples. Melanoma tissues were obtained from clinical trial patients or
patients under standard clinical management with approval of the UCLA Institu-
tional Review Board. Patient-informed consent was obtained for the research per-
formed in this study.
Immunofluorescence. Tissues for BrdU-immunofluorescence staining were ob-
tained after overnight fixation with 4% paraformaldehyde (PFA) at 4 uC, embed-
ded in OCT compound (VWR) and stored at 280 uC. 10-mm thick cryosections
on glass slides were used for immunofluorescence staining according to standard

protocols. Tissue for all other immunofluorescence experiments from xenograft
tumours was obtained after fixation with 4% PFA at 4 uC and a series of dehydra-
tion steps from 15% to 30% sucrose, as described previously38. In brief, tumours
were sliced using a sliding microtome (Fisher). Tumour slices (80mm) were blocked
floating in 10% NGS, 2% BSA, 0.25% Triton in PBS for 2 h at room temperature.
Primary antibodies were incubated overnight at 4 uC in the blocking solution and
the next day for 30 min at room temperature. After washes in PBS-Triton 0.25%,
secondary antibodies were added in the blocking solution and incubated for 2 h.
After extensive washing in PBS-Triton 0.25%, nuclei were stained with Bis-
Benzamide for 5 min at room temperature, tumour slices were washed and trans-
ferred to glass slides. Slices were mounted with ProLong Gold anti fade reagent
(Invitrogen). Primary antibodies: GFP (GFP-1020, Aves Labs, 1:1,000), collagen IV
(AP756, Millipore, 1:500), BrdU (ab6326, Abcam, 1:250), FRA1 (sc605, Santa Cruz,
1:200). Secondary antibodies: Alexa-Fluor-488 anti-chicken, Alexa-Fluor-555 anti-
rabbit, Alexa-Fluor-555 anti-rat (Invitrogen). Stained sections were visualized using
a Carl Zeiss Axioimager Z1 microscope or with a Leica SP5 upright confocal micro-
scope using 310 or 320 objectives. Images were analysed with ImageJ, and Meta-
morph software.
Flow cytometry. Flow cytometry was performed as described previously22, with
minor modifications. In brief, whole tumours were dissected, cut into smaller sec-
tions and dissociated for 1–3 h with 0.5% collagenase type III (Worthington Bio-
chemical) and 1% dispase II (Roche) in PBS. Resulting single cells suspensions were
washed with PBS supplemented with 2% FBS and filtered through a 70-mm nylon
mesh. The resulting single cell suspension was incubated for 10 min at 4 uC with
anti-mouse Fc-block CD16/32 antibody (2.4G2 BD) in PBS supplemented with
1% BSA. Cells were subsequently washed with PBS/BSA and stained with control
antibodies or antibodies to detect immune cells diluted in PBS supplemented with
0.5% BSA and 2 mM EDTA. The following antibodies against mouse antigens were
used: CD45-PE-Cy7 (clone 30-F11, BD Pharmingen, 1:200), CD11b-APC (clone:
M1/70, BD Pharmingen, 1:100), Gr1-PE (MACS, 1:10), CD31-APC (clone: 390,
eBioscience, 1:100), F4/80-PE (clone: BM8, eBioscience, 1:50). To determine the
level of EdU incorporation in A375R cells within vehicle- or vemurafenib-treated
A375/A375R tumours, EdU (50 mg kg21, Life Technologies) was injected intraper-
itoneally, after 2 h tumours were collected, single-cell suspensions generated as
described above and further processed according to the manufacturer’s protocol
(Click-iT Plus EdU Alexa Fluor 647 Flow Cytometry Assay Kit, Life technologies).
Data were acquired using a FACS Calibur (BD Biosciences). All experiments were
performed independently at least two times. Representative experiments are shown.
Antibody arrays. Cytokines and cytokine receptors of murine stromal and immune
cells, in A375 tumours treated with vehicle or vemurafenib for 5 days, were mea-
sured using the Mouse Cytokine Array G2000 (RayBio, AAH-CYT-G2000-8, de-
tecting 174 proteins), according to the recommended protocols. In brief, tumours
were homogenized with a Mini Immersion Blender (Pro Scientific) in Raybio Lysis
buffer with protease inhibitors. Lysates were centrifuged for 5 min at 10,000g, the
supernatant was collected and protein concentration was measured using the BCA
Assay Kit (Pierce). Protein (150mg) was hybridized on the antibody arrays over-
night at 4 uC. IRDye-labelled streptavidin (LI-COR) at a dilution of 1:5,000 was used
for the detection, slides were scanned using a Odyssey CLx scanner (LI-COR) and
analysed using Image Studio 2.0 software. The results were then normalized using
internal controls, and the relative protein levels determined across four biological
replicates.
Senescence b-galactosidase staining. A375 cells were grown in low-serum media
and treated with vehicle or vemurafenib (0.1mM) for 3 or 8 days, b-galactosidase
staining was performed according to the manufacturer’s instructions (Cell Signaling).
All experiments were performed independently three times. Representative ex-
periments are shown.
Statistical analysis. Data are generally expressed as mean 6 s.e.m., or in box plots
in which the centre line is the median, and whiskers are minimum to maximum
values. Group sizes were determined based on the results of preliminary experiments
and no statistical method was used to predetermine sample size. Group allocation
and outcome assessment were not performed in a blinded manner. All samples that
met proper experimental conditions were included in the analysis. Statistical sig-
nificance was determined using a two-tailed Mann–Whitney U test or Student’s
t-test using Prism 6 software (GraphPad Software), or using a hypergeometric var-
iability test (http://www.geneprof.org). Significance was set at P , 0.05.
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Extended Data Figure 1 | Targeted therapy or oncogene knockdown leads to
regression of sensitive melanoma and lung adenocarcinoma tumours but
accelerates the proliferation and seeding of residual drug-resistant cells
in vivo. a, FACS analysis of sensitive A375 and vemurafenib-resistant A375R

cells expressing TGL, at tumour implantation and after 2 weeks at start of
therapy (n 5 8 tumours). Plots depict representative images. b, Tumour
volume of A375 cells treated with vehicle or vemurafenib over time (vehicle,
n 5 8; vemurafenib, n 5 12 tumours). c, Representative sections of A375/
A375R-TGL tumours at 0, 1, 3 and 6 days of vemurafenib treatment analysed
with immunofluorescence against GFP. Arrowheads indicate emerging clusters
of GFP1 resistant cells. Scale bars, 2 mm. d, Quantification of BrdU
incorporation into vemurafenib-resistant A375R-TGL cells in A375/A375R

tumours treated with vehicle or vemurafenib for 6 days (vehicle, n 5 13 FOV of
3 tumours; vemurafenib n 5 18 FOV of 4 tumours). Original magnification,
320. e, Fold change of photon flux of TGL-expressing A375R cells in A375
tumours or A375R tumours alone treated with vehicle or dabrafenib for 8 days
(A375/A375R: vehicle, n 5 15; dabrafenib, n 5 14; A375R: vehicle, n 5 8;
dabrafenib, n 5 7 tumours). f, Tumour volume of doxycycline-inducible BRAF
knockdown A375-i-shBRAF-derived xenograft tumours (in which ‘A375-i’
denotes expression of doxycycline-inducible hairpin) treated with vehicle or
doxycycline over time (vehicle, n 5 5; doxycycline, n 5 4 tumours). g, Photon
flux of TGL-expressing A375R cells mixed in A375-i-shBRAF tumours treated
with vehicle or doxycycline (vehicle, n 5 10; doxycycline, n 5 11 tumours).
h, Fold change of photon flux of TGL-expressing vemurafenib-resistant
M249R4 tumours treated with vehicle or vemurafenib (n 5 16 tumours).

i–k, Co-implantation assay of tumours treated with vehicle or corresponding
targeted therapy with BLI quantification after 5–8 days. i, Fold change of
photon flux of TGL-expressing vemurafenib-resistant YUMM1.7R cells mixed
in unlabelled, vemurafenib-sensitive YUMM1.7 tumours or YUMM1.7R

tumours alone (YUMM1.7/YUMM1.7R: n 5 24 ; YUMM1.7R: n 5 20
tumours). j, Fold change of photon flux of TGL-expressing, intrinsically
vemurafenib-resistant B16 cells mixed in vemurafenib-sensitive YUMM1.1
tumours or B16 tumours alone (YUMM1.1/B16: vehicle, n 5 12; vemurafenib,
n 5 16; B16: n 5 20 tumours). k, A375R mixed in crizotinib-sensitive H3122
cells or A375R tumours alone (H3122/A375R: vehicle, n 5 14; crizotinib,
n 5 13; A375R: n 5 12 tumours). l, Photon flux of tumours established from
intrinsically resistant drug-resistant cells alone, treated with vehicle, crizotinib
or erlotinib (crizotinib-resistant PC9, H2030- or erlotinib-resistant A375R)
(n (from left to right) 5 12, 12, 7, 12, 16 and 16 tumours, respectively).
m, Summary of the model systems and conditions used in vivo. n, Left,
representative immunofluorescence images of vemurafenib-treated, sensitive
tumours 7 h or 5 days after intracardiac injection with A375R-TGL cells;
sections stained for GFP (A375R, green), collagen type IV (blood vessels, red),
and DAPI (nuclei, blue). Right, quantification of A375R single cells and cell
clusters ($2 cells) infiltrating an A375 tumour treated with vehicle or
vemurafenib after intracardiac injection of A375R cells (GFP1 cells were scored
in at least 10 whole sections of at least 4 tumours). Original magnifications,
320. Data in b, e–l and n are mean and s.e.m., in f, centre line is median,
whiskers are minimum to maximum. P values calculated by a two-tailed
Mann–Whitney U test.
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Extended Data Figure 2 | The secretome of vemurafenib-treated melanoma
and crizotinib- or erlotinib-treated lung adenocarcinoma cells stimulates
the proliferation and migration of drug-resistant cells in vitro and occurs
before apoptosis and senescence. a, Quantification of the co-culture assay,
depicted in Fig. 2a, 7 days after addition of resistant A375R-TGL cells (n 5 4
biological replicates). P values calculated using a Student’s t-test. b, c, Drug-
sensitive cells were pre-treated with vehicle or drug (crizotinib or erlotinib)
for 48 h before 5 3 102 TGL-expressing, drug-resistant cells were added.
Growth was monitored by BLI and quantified 7 days after addition of the
resistant cell population (n 5 8 biological replicates), P values calculated using a
Student’s t-test. b, Quantification and representative images of TGL-expressing
H2030 cells alone or co-cultured with crizotinib-sensitive H3122 cells and
treated with vehicle or crizotinib c, Quantification and representative images of
TGL-expressing A375R cells alone or co-cultured with erlotinib-sensitive
HCC827 cells and treated with vehicle or erlotinib. d, Relative number of
vemurafenib-resistant LOXR cells after 3 days in the presence of conditioned
media derived from A375 and UACC62 cells (n 5 3 biological replicates).
e, Representative immunofluorescence for Ki67 in drug-resistant YUMM1.7R

cells cultured in conditioned media from YUMM1.7 cells. Original
magnification, 320. f, Relative number of vemurafenib-resistant melanoma
cells with different, clinically relevant resistance mechanisms after 3 days in the
presence of conditioned media derived from A375 cells. SKMEL239-3
expressing the p61 BRAFV600E splice variant, A375 expressing NRASQ61K or

the constitutively active MEK variant MEK-DD (n 5 5 biological replicates).
g, Relative cell number of intrinsically vemurafenib-resistant lung
adenocarcioma cells (H2030, PC9) or crizotinib- and erlotinib-resistant
melanoma cells (A375R) after 3 days cultured in the presence of conditioned
media from vemurafenib-treated melanoma or crizotinib- and erlotinib-
treated lung adenocarcinoma (n 5 6 in all, except for A375R with HCC827-
CM, n 5 4 biological replicates). h, Representative image of A375R cells
migrated towards A375-derived CM-vehicle or CM-vemurafenib. Original
magnification, 310. i, Relative migration towards conditioned media
from different sources and different resistant test cells as indicated (n 5 10
FOV). **P , 0.01, ****P , 0.0001, two-tailed Mann–Whitney U test.
j, Representative graph and quantification of real-time migration of A375R cells
in the presence of conditioned media derived from A375 cells as measured
by the xCELLigence system (n 5 4 biological replicates). P value calculated
using two-tailed Mann–Whitney U test. k, Monolayer gap closing assay of
A375R cells in the presence of conditioned media derived from A375 cells with
representative light microscopy images and quantification of gap closure over
time. l, Immunoblotting for cleaved caspase-3 and phosphorylated ERK
protein levels in vemurafenib-sensitive melanoma cell lines after 72 h of
vemurafenib treatment. m, b-galactosidase staining of A375 cells treated with
vemurafenib for 72 h or 8 days. Original magnification, 313. Data are
presented mean and s.e.m.
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Extended Data Figure 6 | The secretome of melanoma cells with FRA1
knockdown stimulates proliferation and migration of A375R cells in vitro
and in vivo. a, Immunoblotting of phosphorylated and total FRA1 protein
levels in A375 cells transduced with control shRNA, with or without additional
vemurafenib treatment, or shRNAs targeting FRA1. b, Photon flux and
representative BLI images of TGL-expressing A375R cells co-cultured with
A375 cells expressing control shRNA (with or without vemurafenib treatment)
or FRA1-targeting shRNAs after 7 days (n 5 9 biological replicates). c, Relative
number of A375R cells after 3 days in the presence of conditioned media derived
from A375 cells transduced with control shRNA, with or without additional
vemurafenib treatment, or FRA1 shRNAs (n 5 3 biological replicates).

d, Migration of A375R cells towards conditioned media derived from A375 cells
transduced with control shRNA (with or without vemurafenib treatment) or
FRA1 shRNAs using a Boyden chamber assay (shCtrl, n 5 15; all other groups
n 5 10 FOV) e, Relative mRNA levels of selected secreted factors and
transcription factors of A375 cells expressing control shRNA or an shRNA
targeting FRA1 (shFRA1-1), treated with vehicle or vemurafenib (24 h).
f, Bioluminescent signal of A375R-TGL cells 8 days after subcutaneous co-
implantation with UACC62 cells expressing a control or an shRNA for FRA1
(shCtrl, n 5 12; shFRA1, n 5 20 tumours). Data are mean and s.e.m. *P , 0.05,
**P , 0.01, ***P , 0.001, ****P , 0.0001, Student’s t-test.
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Extended Data Figure 7 | The TIS includes upregulated positive regulators
and a loss of negative regulators of the PI(3)K/AKT/mTOR pathway,
which is activated in sensitive and resistant cells in vitro and in vivo.
a, b, Enriched biological processes (a) and inferred drug vulnerabilities (b) as
determined by Ingenuity pathway analysis of gene expression data from
vemurafenib-resistant A375R cells responding to signals from the reactive
tumour microenvironment of a tumour regressing during targeted therapy
in vivo (for experimental set-up see Fig. 1a and Methods). c, Left,
immunoblotting of phosphorylated AKTS473 and phosphorylated ERK protein
levels in A375 cells treated with vehicle or vemurafenib at different time points
during the generation of conditioned media. Right, immunoblotting of
phosphorylated AKTS473 and phosphorylated ERK protein levels in A375
cells after short-term exposure to conditioned media derived from A375 cells
treated with vehicle or vemurafenib. d, Immunoblotting of phosphorylated
AKTS473 and phosphorylated FRA1 protein levels in A375-derived xenograft
tumours treated with vehicle or vemurafenib for 5 days. Normalized
quantification of phospho-AKTS473/tubulin in the bottom panel.
e, Immunoblotting of a range of pathway nodes in A375R cells treated with

CM-vehicle or CM-vemurafenib, derived from A375 cells, for 15, 30, 60 or
120 min. f, Cancer cell-derived IGFBP3 levels (left) and murine stromal IGF1
levels (right) in A375-derived xenograft tumours treated with vehicle or
vemurafenib for 5 days as determined by ELISA (n 5 4 tumours) g, Cancer-
cell-derived IGFBP3 levels in conditioned media from indicated melanoma cell
lines treated with vehicle or vemurafenib as determined by ELISA (n 5 3
technical replicates of conditioned media derived from at least two biological
replicates). h, IGFBP3 levels in conditioned media derived from A375 cells
expressing control shRNA or shRNAs targeting IGFBP3 (shIGFBP3-1 and -2)
as determined by ELISA (n 5 3 technical replicates). i, Immunoblotting of
phosphorylated AKTS473 in A375R cells after incubation with conditioned
media of A375 cells expressing control shRNA or shRNAs targeting IGFBP3.
j, Phosphorylation status of AKTS473 in A375R cells after incubation for 15 min
with conditioned media, IGF1 and IGFBP3 as indicated. k, Bioluminescent
signal of A375R-TGL cells 10 days after co-implantation with A375 cells
expressing a control shRNA or an shRNA targeting IGFBP3 (shIGFBP3-1)
(n 5 10 tumours). P values calculated by a two-tailed Mann–Whitney U test.
Data are mean and s.e.m.
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Extended Data Figure 9 | Characterization of cell lines in response to
targeted therapy. a–h, Relative survival of human melanoma cell lines
(A375, Colo800 and UACC62) (a, c, e), and the murine melanoma cell line
YUMM1.7 (g) and corresponding vemurafenib-resistant derivatives (A375R,
Colo800R, UACC62R and YUMM1.7R) under increasing concentrations of
vemurafenib. Immunoblotting of phosphorylated ERK protein levels in
indicated melanoma cell lines in the presence of increasing concentrations of
vemurafenib (b, d, f, h). i, Immunoblotting of phosphorylated ERK and

phosphorylated AKTS473 protein levels in HCC827 lung adenocarcinoma cells
in the presence of increasing concentrations of erlotinib. j, Immunoblotting of
phosphorylated ERK protein levels in H3122 lung adenocarcinoma cells in
the presence of increasing concentrations of crizotinib. k, Immunoblotting of
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Extended Data Table 1 | Clinical data for tissue donor subjects

Study site Pt # Bx samples Age & Sex Stage Dose (mg) BOR PFS (days) Bx site

UCLA 1 TG Baseline 51M M1c 960 bid vemurafenib -21% 108 SC, scalp
Day 7 SC, scalp

2 JCC Baseline 44M M1c -63% Current response SC, abdomen
Day 15 SC, abdomen

3 YAU Baseline 26F M1c -46% 145 Dermal/SC, abdomen 
Day 22 Dermal/SC, clavicle 

960 bid vemurafenib
+60 qd cobimetinib 
960 bid vemurafenib
+60 qd cobimetinib 

bid, twice daily; BOR, best overall response; Bx, biopsy; F, female; M, male; PFS, progression-free survival; Pt, patient; qd, daily; SC, subcutaneous; UCLA, University of California, Los Angeles.
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