Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability

**Graphical Abstract**

- **Microsatellite instable (MSI)**
  - Frameshift mutations
  - Immunogenic peptides
  - Anti-tumor T cells
  - Immunoeediting
  - Mutations
  - Chromosomal instability
  - Prolonged survival

- **Microsatellite stable (MSS)**

**In Brief**

Microsatellite instability is due to a DNA mismatch repair deficiency. Galon and colleagues performed a comprehensive analysis of microsatellite-instable tumors and showed the genetic, genomic, and immune landscapes in microsatellite instability. They demonstrated the presence of functional mutation-specific cytotoxic T cells and the superiority of Immunoscore over microsatellite instability in predicting survival.

**Highlights**

- MSI and a subgroup of MSS patients have high intratumoral adaptive immune gene expression
- Functional effector anti-frameshift mutation CTLs kill tumor cells in MSI patients
- Genetic evidence of immunoediting in human CRC, in particular for MSI patients
- Immunoscore gives an indicator of tumor recurrence and survival beyond MSI staging
Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability


SUMMARY

Microsatellite instability in colorectal cancer shows favorable outcomes. However, the mechanistic relationship between microsatellite instability, tumor-infiltrating immune cells, Immunoscore, and their impact on patient survival remains to be elucidated. We found significant differences in mutational patterns, chromosomal instability, and gene expression that correlated with patient microsatellite instability status. A prominent immune gene expression was observed in microsatellite-instable (MSI) tumors, as well as in a subgroup of microsatellite-stable (MSS) tumors. MSI tumors had increased frameshift mutations, showed genetic evidence of immunoeediting, had higher densities of Th1, effector-memory T cells, in situ proliferating T cells, and inhibitory PD1-PDL1 cells, had high Immunoscores, and were infiltrated with mutation-specific cytotoxic T cells. Multivariate analysis revealed that Immunoscore was superior to microsatellite instability in predicting patients’ disease-specific recurrence and survival. These findings indicate that assessment of the immune status via Immunoscore provides a potent indicator of tumor recurrence beyond microsatellite-instability staging that could be an important guide for immunotherapy strategies.

INTRODUCTION

Accumulating evidence suggests that tumor progression and recurrence are governed not only by genetic changes intrinsic to cancer cells, but also by environmental factors (Galon et al., 2014). The American Joint Committee on Cancer (AJCC) and the Union for Intercation Cancer Control (UICC) TNM classification has been shown to be valuable in estimating the outcome of patients for a variety of cancers (Locker et al., 2006; Sobin and Wittekind, 2002; Weitz et al., 2005). This approach is powerful, but it provides incomplete prognostic information, given that clinical outcome can vary substantially among patients within the same histological tumor stage (Nagtegaal et al., 2012). A molecular classification of colorectal cancer (CRC) is also used...
In CRC, microsatellite instability is reported to predict favorable outcomes and decreased likelihood of metastases (Gryfe et al., 2000). In CRC, microsatellite instability is due to a DNA mismatch repair (MMR) system deficiency caused by an epigenetic silencing of MLH1 (a MMR-associated gene) or by germline mutations of a DNA repair gene followed by the somatic inactivation of the second allele (known as Lynch syndrome). This defect leads to accumulation of insertions and deletions in DNA repeat sequences. Furthermore, in genes containing coding repeats, frameshift mutations are a potential source of immunogenic neo-antigens recognized by the immune system (Williams et al., 2010).

The prognostic impact of in situ immune cell infiltrate in tumors has been extensively reported (Atreya and Neurath, 2008; Bindea et al., 2013b; Broussard and Disis, 2011; Finn, 2008; Fridman et al., 2012; Galon et al., 2006; Mlecnik et al., 2011; Pagès et al., 2005; Pagès et al., 2009). Large studies analyzing microsatellite stable (MSS) patients have shown association of T cell subpopulations with prognosis (Nosho et al., 2010; Ogino et al., 2009; Zlobec et al., 2010). “Immunoscore” is a scoring system, based on the quantification of cytotoxic and memory T cells in the core of the tumor (CT) and in the tumor’s invasive margin (IM) (Angell and Galon, 2013; Berghoff et al., 2016; Galon et al., 2012a; Galon et al., 2014). Immunoscore is a clinically useful prognostic marker in CRC (Galon et al., 2006; Galon et al., 2012b; Mlecnik et al., 2011; Pagès et al., 2009) and has a dual advantage over TNM staging. First, Immunoscore appears to be the strongest prognostic factor for survival (Galon et al., 2013; Galon et al., 2006; Mlecnik et al., 2011; Pagès et al., 2009), and second, the anti-tumor activity of these naturally infiltrating T cells might be amenable to enhancement by novel immunotherapy approaches (Brahmer et al., 2012; Des Guetz et al., 2009; Hodi et al., 2010; Robert et al., 2011; Topalian et al., 2012). A pre-existing anti-tumor immune response in the patient is reported to be important in the setting of PD1 blockade (Pardoll, 2012). Therefore, MSI tumors could be more responsive to such treatment (Le et al., 2015), given that they have increased numbers of mutations and neo-antigens, a dense immune infiltration (Le et al., 2015), and high amounts of immune checkpoint molecules (Losa et al., 2015).

Despite previous study, there has been no integrated evaluation of the genetic and genomic changes, the immune patterns in the tumor microenvironment, and their prognostic significance for CRC patients with or without microsatellite instability. Little is also known about the activity and specificity of tumor-infiltrating T cells. Here, we aimed to characterize the existence of anti-tumor T cells within CRC tumors, in relation to tumor genotype, instability status, and immune response. We studied the parameters associated with DNA MMR defects in two cohorts of CRC patients. Mutation patterns, chromosomal instability (CIN) status, and RNA sequencing (RNA-seq) data from 270 patients were analyzed (from the Cancer Genome Atlas [TCGA] cohort), and findings were validated in an independent cohort of 689 patients. Cohort 3 represents all solid tumors from TCGA (n = 3,659). All data were then analyzed in relation to the degree of microsatellite instability. We further investigated the dependency or independency of microsatellite instability and Immunoscore in relation to patient survival.

We demonstrated that immune infiltration and Immunoscore are better at defining the prognosis of CRC patients and identifying patients at high-risk of tumor recurrence, regardless of microsatellite instability.

RESULTS

MSI, and a Subgroup of MSS, Patients Have High Intratumoral Immune Gene Expression and Prolonged Survival

Publicly available RNA-seq data, genomic alterations, and manually curated mutations from 270 CRC patients (cohort 1) (Cancer Genome Atlas, 2012) were compared between MSI patients and the remaining patients in the cohort (MSS) with ClueGO and CluePedia Cytoscape apps (Bindea et al., 2013a; Bindea et al., 2009) developed in our laboratory (Figures 1A and S1A). As previously demonstrated, the MSI group included more patients with hypermutations and MLH1 silencing patterns than the MSS group did (Figure S1A) and was associated with significantly fewer chromosomal gains and losses (Trautmann et al., 2006). Recurrent somatic mutations in genes including ACVR2A, TGFB2, FBXW7, and ARID1A were observed more frequently in MSI tumors, whereas APC, TP53, and KRAS were less frequently mutated than they were in MSS tumors. A similar profile of genomic aberrations was found in cohort 2 (Figures S1B–S1D). Eleven microsatellite loci (including the new Bethesda panel) were tested in cohort 2 to determine the microsatellite status. CRC patients showed a diverse pattern of instability, some with instability in all markers and others with a single unstable locus (Figure S1E). This analysis, done by unsupervised hierarchical clustering of mutational data, revealed six patient clusters that had no difference in overall survival (OS) (Figure S1F). Similarly, CIN-based groups had a similar OS (Figure S1G). MSI tumors from cohort 1 had 456 upregulated (Hi cluster) and 495 downregulated (Lo cluster) genes in comparison to MSS tumors (Figure 1A). The unsupervised hierarchical clustering of the expression data showed that most of the MSI patient samples had a similar profile and clustered together. In comparison, the MSS samples showed a more heterogeneous pattern. These 951 differentially regulated genes were mainly associated with immune-related functions, encompassing antigen processing and presentation, interferon-gamma signaling, response to cytokines, leukocyte migration, viral processes, and response to tumor-necrosis-factor-related pathways (Figure 1B). The genes that were most highly expressed in MSI tumors were primarily associated with these immune pathways (Figure 1C). Despite similar gene cluster size, and after application of identical pathway selection criteria, the translational initiation function was the only pathway associated with the Lo-cluster of downregulated genes.

Additionally, the immunoome, a compendium of 28 immune cell types infiltrating tumors (Bindea et al., 2014; Bindea et al., 2013b), was analyzed in MSI and MSS patients from cohort 1, and known T helper 1 (Th1)-related genes, cytokines, and cytokine receptors were evaluated. Of all immune subpopulations, cytotoxic, CD8, Th1, Th2, T follicular helper (Tfh), and T cell markers had significantly higher expression in MSI than in MSS tumors (Figure 2A). One marker for each of the subtypes—dendritic cells, activated dendritic cells, macrophages, and neutrophils—was included in the network of differentially expressed...
genes. All other immune population markers that were analyzed had similar expression in MSI and MSS tumors. Multiple cytokines and cytokine receptors had significantly increased expression in MSI tumors. In contrast, genes like CCL24, known to be upregulated in tumors (Tosolini et al., 2011), as well as CXCL14, PRLR, ACVR1B, and TGFBR2, which are potentially involved in epithelial to mesenchymal transition, were significantly more highly expressed in MSS tumors than in MSI tumors.

Transcript amounts of important soluble immune factors (IFNG, IL15, GNL3, CCL3, CXCL16) were increased, whereas CXCL14 was decreased in patients with MSI (Figure 2B); these results were validated by qPCR in cohort 2 (Figure 2C). MSI patients in cohort 2 also had significantly increased expression of many immune-related genes (Figure S2A). However, a few MSI patients had a low expression of these genes in comparison to the rest of the MSI patients (Figure S2A). As in cohort 1, MSS patients were heterogeneous, with some patients exhibiting high expression of immune genes, similar to MSI patients. MSI patients had prolonged disease-free survival (DFS) times in comparison to MSS patients. Additionally, within the MSS group, the relapse risk differed depending on the immune gene expression. MSS patients with increased cytotoxic and Th1 gene expression had a significantly lower risk of relapse than MSS patients with low expression (Figure S2B) (HR [hazard ratio] = 2.1 [1.1–4.1], p = 0.03). There was no significant difference in risk of relapse in patients with MSS and high immune expression (MSS-Hi), and those with MSI. In contrast, the patients with MSS and low immune expression (MSS-Lo) had a significantly higher risk of relapse than the MSI patients (HR = 3.2 [1.0–10.4], p = 0.03). In comparison to immune markers, half of the tumor-related genes were also highly expressed in MSI tumors; however, high expression of these genes in MSS patients did not impact the DFS (Figure S2C). Risk of relapse for MSS patients with either high or low expression of tumor-related genes was not
Figure 2. Immune Gene Expression in MSI and MSS CRC Patients

(A) Expression of immune cell markers (Immunome) was investigated in MSI and MSS patients (cohort 1) with the ClueGO and CluePedia Cytoscape apps. Markers with significantly different expression (Wilcoxon Mann-Whitney p < 0.05) are shown in a network. Markers associated to a cell type share the color of the node. The edges indicate the Δ difference of the log 2 expression values (MSI-MSS) of the respective node (gene). Negative Δs are shown with a discontinuous line.

(B) Gene expression in MSI (red) and MSS (black) patients from cohort 1 (RNA-seq).

(C) Gene expression in MSI (red) and MSS (black) patients from cohort 2 (qPCR low density array). Each dot represents an individual measurement of the gene expression in one individual. The mean values are indicated by blue dashes. Statistical analyses were performed by the unpaired t test method (**p < 0.005, *0.005 > = p < 0.01, *0.01 > = p < 0.05). See also Figure S2.
We next investigated the in situ immune response in the CT and IM of 490 CRC patients from cohort 2 by quantifying the number of positive cells per unit of tissue surface area. The stroma is represented in yellow, the tumor in pink, and the stromal and intratumoral CD8 T cells are represented in red and blue, respectively. The immune cell densities were recorded as the number of positive cells per unit of tissue surface area. (B) Immune cell infiltrates in the CT (black) and in the IM (white) of tumors from MSI (red) and MSS (gray) patients (cohort 2). Tissue microarray measured immune density. Cytotoxic T (CD8 and GZMB), stromal cytotoxic T (CD8stroma), intratumoral cytotoxic T (CD8intra), B cells (CD20), macrophages (CD68 intra), Th17 (IL-17), and NK (NKP46) were quantified by immunohistochemistry. For CD8 and CD68, the cell densities were evaluated as total cell density, as stromal cells, and as intratumoral cells (within the tumor glands). The density of the cells was recorded as cells per mm². Bar charts represent the mean ± SEM cell densities in the MSI and MSS patient groups, and the median cell count per mm² is in blue. The Wilcoxon Mann-Whitney method was applied (***p < 0.001, **p < 0.01, *p < 0.05). (C) T (CD3) and B (CD20) cell proliferation within CRC tumors. Cells positive for CD3, CD20, and K67 are shown in green, gray, and red, respectively. (D) Immune cell infiltrates in the CT (black) and in the IM (white) of tumors from MSI (red) and MSS (gray) patients (cohort 2). Bar charts represent the mean densities ± SEM of proliferating T cells (CD3+K67+) as cells per mm² of tissue in the CT, IM, and LIs. Statistical analyses were performed by the Wilcoxon Mann-Whitney method (***p < 0.001, **p < 0.005, *p < 0.01, *p < 0.05). See also Figure S2.

**Increased Cytotoxic T cell, B cell, and Macrophage Densities in MSI Tumors**

We next investigated the in situ immune response in the CT and IM of 490 CRC patients from cohort 2 by quantifying the number of cells (cells/mm²) of the following type: CD8+ T cells (Figure 3A), cytotoxic cells (detected with GZMB), B cells (CD20), macrophages (CD68), Th17 cells (interleukin 17 [IL-17]), and natural killer (NK) cells (NKP46). The total density of cytotoxic T cells was significantly higher in MSI samples than in MSS samples (Figure 3B). Because our previous research has shown that the precise intratumoral localization of infiltrating immune cells is very important (Bindea et al., 2013b; Galon et al., 2006), we measured CD8+ T cell densities within the tumor glands (intratumoral) or within the stroma. MSI and MSS patients showed similar stromal CD8+ T cell densities. However, there was a significant increase in the density of CD8+ T cells within the tumor glands in MSI patients, in both the CT and IM (both p < 0.05). GZMB was also significantly increased in the IM of MSI patients (p < 0.05). The majority of the B cells accumulated at the IM and their density was significantly increased in MSI patients (p < 0.05). MSI patients also had a significantly higher mean CD68 density in the CT (p < 0.001), but not in the IM (Figure S2D). Furthermore, similar to the CD8+ T cells, the macrophage infiltrate in the tumor glands was significantly higher in MSI in the CT (p < 0.01), as well as in the IM (p < 0.05). In contrast, the MSS patients showed a significantly increased Th17 infiltration in the CT (p < 0.05) and a very similar trend for the

**Figure 3. The Immune Cell Density in MSI and MSS CRC Patients**

A) A representative example of CD8 immunostaining of a CRC tissue microarray (left) and the corresponding digital image (right). CD8 T cells (brown) and tumor cells (CK8, blue) are shown. The stroma is represented in yellow, the tumor in pink, and the stromal and intratumoral CD8 T cells are represented in red and blue, respectively. The immune cell densities were recorded as the number of positive cells per unit of tissue surface area. (B) Immune cell infiltrates in the CT (black) and in the IM (white) of tumors from MSI (red) and MSS (gray) patients (cohort 2). Tissue microarray measured immune density. Cytotoxic T (CD8 and GZMB), stromal cytotoxic T (CD8stroma), intratumoral cytotoxic T (CD8intra), B cells (CD20), macrophages (CD68 intra), Th17 (IL-17), and NK (NKP46) were quantified by immunohistochemistry. For CD8 and CD68, the cell densities were evaluated as total cell density, as stromal cells, and as intratumoral cells (within the tumor glands). The density of the cells was recorded as cells per mm². Bar charts represent the mean ± SEM cell densities in the MSI and MSS patient groups, and the median cell count per mm² is in blue. The Wilcoxon Mann-Whitney method was applied (***p < 0.001, **p < 0.01, *p < 0.05). (C) T (CD3) and B (CD20) cell proliferation within CRC tumors. Cells positive for CD3, CD20, and K67 are shown in green, gray, and red, respectively. (D) Immune cell infiltrates in the CT (black) and in the IM (white) of tumors from MSI (red) and MSS (gray) patients (cohort 2). Bar charts represent the mean densities ± SEM of proliferating T cells (CD3+K67+) as cells per mm² of tissue in the CT, IM, and LIs. Statistical analyses were performed by the Wilcoxon Mann-Whitney method (***p < 0.001, **p < 0.005, *p < 0.01, *p < 0.05). See also Figure S2.
Immunity 44, 698–711, March 15, 2016 ©2016 Elsevier Inc. 703
IM (Figure 3B). No differences in NK cell densities were observed. Together this demonstrates a significant increase in cytotoxic T cell, B cell, and macrophage infiltration in tumors from MSI patients.

High Frequency of Frameshift Mutations, Immunoediting, and Functional Specific Anti-tumor T Cells in MSI Tumors

One mechanism explaining enhanced immunogenicity of MSI tumors could be their increased cytokine expression (Figures 2A and 2B and S2A). For example, cytokines, such as IL-15, could influence the proliferation of locally infiltrating immune cells (Mlecník et al., 2014). We quantified the density (cells/mm²) of the in situ proliferating T (CD3⁺Ki67⁺) and B (CD20⁺Ki67⁺) cells within lymphoid islets (LIs), the IM, and the CT (Figure 3C). MSI patients had a significantly higher density of proliferating T cells than MSS patients did in the LIs (p < 0.05) and the IM (p < 0.05) and a higher total density in the CT (Figure 3D). The density of proliferating B cells was similar in MSI and MSS tumors (data not shown).

Another possibility is that, within the tumor microenvironment, genomic alterations (Figure S1B) of cytokines could modify their expression and affect in situ T cell proliferation. MSI patients had a significantly reduced frequency of CIN (Figure S1A).

In contrast, MSI tumors had a high mutational load followed by a significantly increased number of frameshift and missense mutations, as well as of neo-epitopes per tumor (Figure 4A). The increase in frameshift mutations appears to be an important resource of immunogenic mutations because the frequency of epitopes per frameshift mutation is higher than that per missense mutation. To determine whether the high mutational rate, and high immune infiltrate, observed in MSI tumors could result in immune editing, we tested whether the observed number of mutations or the number of epitopes per mutation was lower than expected (Figure 4B). The total number of frameshift and missense mutations was as expected for CRC and was independent of the microsatellite instability status. There was a significant drop in the number of neo-epitopes per mutation, but not in the number of mutations or silent mutations, in CRC, for both frameshift and missense mutations (Figures 4C and 4D). The deviation of the epitope rates from expectation was more pronounced in MSI tumors, with a 2-fold decrease in neo-epitopes for frameshift mutations and 4-fold decrease for missense mutations. These observations were confirmed in cohort 2 (Figure 4D).

Validation of these results with multiplex PCR showed that TGFB R2 frameshift mutations were very frequently detected in MSI, but not in MSS, tumors (Figure 4E).

For the majority of the analyzed genes, the mutations yielded neo-peptides with a high binding affinity to the most frequent HLA alleles (Figure S3A). Only three of the genes had no immunogenic mutations predicted to bind to HLA class I alleles. Many of the antigens were similar to TGFB R2, with mutations generating neo-epitopes predicted to bind to multiple HLA class I alleles. Several mutations also yielded neo-peptides for multiple HLA class II alleles (Figure S3B).

A tumor-specific T cell response toward the TGFB R2 (−1) mutation-derived neo-antigen was detected by immunohistochemistry with HLA-A*0201 molecules bearing a neo-epitope derived from this frameshift mutation (FSP02) in the primary tumor (Figure 4F and Figure S3C).

In order to demonstrate neo-antigen-specific T cell functionality in patients with CRC, we isolated peripheral TLs from six HLA-A*02 patients. Only the two MSI patients harboring the TGFB R2 (−1) mutation in their tumor produced IFNγ (Figure 4G) and TNFα (Figure S3D) upon contact with T2 cells pulsed with FSP02 peptide and were able to specifically lyse T2 cells or a CRC cell line harboring the TGFB R2 (−1) mutation (HCT116-HLA-A*0201 MSI) (Figure 4H).

These findings provide genetic evidence of immunoediting in human CRC and demonstrate that an effective anti-tumor immunity might naturally be elicited against true tumor-specific antigens resulting from somatic mutations.
Immunoscore, but Not MSI and Tumor-Staging Parameters, Is Significant in Multivariate Analysis for DSS, DFS, and OS

Next, we further investigated the impact of microsatellite status and immune parameters on patient outcome (Figure 5). MSI and MSS patient groups were heterogeneous based on immunome (Bindea et al., 2013b) gene expression (Figure 5A). The MSI immune profiles included samples that either highly expressed T and B cell markers or macrophage and neutrophil markers (cluster 1, 2, 3). Some MSI patients had low expression of immune markers and were grouped with the MSS samples. We found similar findings by using immune cell densities to stratify patients (Figure 5B). One cluster of patients expressed higher density of both sets of markers. Patient clusters with high memory and cytotoxic T and B cells had prolonged disease-specific survival (DSS) (Figure S4A) regardless of the tumor’s microsatellite instability status (Figure S4B). However, compared to T and B cells (Figure S4C), macrophage density did not influence DSS (Figure S4D). Interestingly, MSI patients did have increased infiltration of effector memory T cells (CD3+CD45RO+CD45RA−CCR7−CD28−CD27+) in comparison to MSS patients (p < 0.05) (Figure 5C).

Patients that had Immunoscore I4 tumors, highly infiltrated with CD8+ and CD45RO+ T cells in two locations of their tumor, were overrepresented in the MSI group in comparison to the MSS group one (p < 0.02) (Figure 5D). We found similar results with Immunoscore when using CD3 and CD8 (data not shown). However, about 50% of MSS patients had a high Immunoscore (I3 or I4). Patients with a high Immunoscore had a significant overrepresentation of the frequency of cells expressing PD1 in the CT and IM, as well as increased expression of PD1 mRNA (Figure 5E). Immunoscore I4 patients also had significantly better DSS (HR = 6.21 [3.42–11.27], p = 8.55E-12), and overall survival (OS) (HR = 3.96 [2.42–6.47], p = 0.033 and HR = 2.43[1.81-3.26], p = 1E-9, respectively) than patients with a high Immunoscore (I3 or I4) (Figures 5G, 5H, and S4K–S4M).

The heterogeneity of the immune infiltrate observed within MSI and MSS tumors could have multiple causes. Immune densities (Figures S5A–S5C) and the frequency of high Immunoscores (I3 or I4) were significantly higher in patients with Lynch syndrome than in the MSS patients (Figures 5D and S5E) (Popat et al., 2005), but no significant difference was observed between MSI patients and patients with Lynch syndrome (Figures S5F and S5G). The source of microsatellite instability was not a determinant of the tumor infiltrate.

WNT/β-catenin pathway mutations occur in the majority (70%) of the MSS patients (Figures S1A and S5H) and could potentially influence the immune infiltrate, as recently described in melanoma (Spranger et al., 2015). However, these mutations had no impact on the expression of Th1 or cytotoxic gene expression in MSS tumors (Figures S5I and S5J). The CD3 and CD8 infiltrate was not significantly different in patients with or without WNT/β-catenin pathway mutations (Figures S5K and S5L). A subgroup of MSI tumors with WNT/β-catenin mutations showed a strong increase in GZLY and GZMA expression in comparison to the rest of the MSI patients (Figure S5I), whereas intratumoral CD8 and PD1 infiltrates were decreased in the CT (Figure S5L). The frequency of high and low Immunoscore patients with WNT/β-catenin mutations was similar (Figure S5M). WNT/β-catenin pathway mutations did not significantly influence the immune gene expression and infiltrate within MSI or MSS patients.

The amounts of intratumoral PD1 and PDL1 could also influence the response to therapies. In agreement with previous reports (Llosa et al., 2015), significantly different amounts of PD1 (PDCD1) and PDL1 (CD274) were observed in MSI and MSS patients.
Table 1. Multivariate Cox Proportional Hazard Model for DSS among Cohort 2 Patients with AJCC and UICC TNM Stage I–III CRC

<table>
<thead>
<tr>
<th>Variable</th>
<th>PHA Test</th>
<th>HR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSS, Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI status</td>
<td>0.0872</td>
<td>1.33 (0.69–2.57)</td>
<td>0.3951</td>
</tr>
<tr>
<td>Immunoscore</td>
<td>0.2918</td>
<td>0.6 (0.5–0.73)</td>
<td>0.0001*</td>
</tr>
<tr>
<td>DSS, Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI stage</td>
<td>0.1325</td>
<td>1.27 (0.65–2.45)</td>
<td>0.4870</td>
</tr>
<tr>
<td>AJCC and UICC TNM stage</td>
<td>0.0180</td>
<td>1.27 (0.87–1.85)</td>
<td>0.2127</td>
</tr>
<tr>
<td>Immunoscore</td>
<td>0.1331</td>
<td>0.62 (0.51–0.75)</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

Before Stepwise (stepAIC) Selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>PHA Test</th>
<th>HR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI status</td>
<td>0.5811</td>
<td>0.92 (0.45–1.9)</td>
<td>0.8280</td>
</tr>
<tr>
<td>Sex</td>
<td>0.5774</td>
<td>1.31 (0.78–2.19)</td>
<td>0.3047</td>
</tr>
<tr>
<td>Tumor (T) stage</td>
<td>0.0918</td>
<td>1.23 (0.83–1.81)</td>
<td>0.3026</td>
</tr>
<tr>
<td>N stage</td>
<td>0.4403</td>
<td>1.32 (0.77–2.27)</td>
<td>0.3158</td>
</tr>
<tr>
<td>Histologic grade</td>
<td>0.4943</td>
<td>1.08 (0.65–1.78)</td>
<td>0.7789</td>
</tr>
<tr>
<td>VELIPI</td>
<td>0.1206</td>
<td>0.52 (0.3–0.92)</td>
<td>0.0235*</td>
</tr>
<tr>
<td>Mucinous colloid type</td>
<td>0.7579</td>
<td>1.03 (0.57–1.88)</td>
<td>0.9205</td>
</tr>
<tr>
<td>Occlusion</td>
<td>0.9315</td>
<td>0.7 (0.3–1.65)</td>
<td>0.4187</td>
</tr>
<tr>
<td>Perforation</td>
<td>0.2791</td>
<td>2.48 (0.81–7.65)</td>
<td>0.1124</td>
</tr>
<tr>
<td>Immunoscore</td>
<td>0.0770</td>
<td>0.63 (0.51–0.77)</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

Final Model after Stepwise (stepAIC) Selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>PHA Test</th>
<th>HR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI status</td>
<td>0.3951</td>
<td>1.02 (0.51–2.05)</td>
<td>0.9496</td>
</tr>
<tr>
<td>VELIPI</td>
<td>0.0253</td>
<td>0.45 (0.27–0.76)</td>
<td>0.0029*</td>
</tr>
<tr>
<td>Perforation</td>
<td>0.2129</td>
<td>2.68 (0.92–7.81)</td>
<td>0.0704</td>
</tr>
<tr>
<td>Immunoscore</td>
<td>0.1347</td>
<td>0.61 (0.5–0.74)</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

The final model was built based on 367 patients. All categorical covariates were transformed into numeric codes before they were added to the Cox model. Numeric codes are as follows. AJCC and UICC TNM stage: stage I = 0, stage II = 1, stage III = 2. Immunoscore (CD8 and CD45RO were quantified in the center and invasive margin of the tumor, minimum p value cutoff with four groups: I0 = 0 (0 H), I1 = 1, I2 = 2, I3 = 3, I4 = 4 (4 H), T stage (histopathologic criteria of tumor invasion): Tis (in situ) and T1 = 0, T2 = 1, T3 = 2, T4 = 3, N stage (spread to local lymph nodes): N0 = 0, N+ = 1, Sex: male = 0, female = 1, Histological grade: well differentiated = 0, moderately differentiated = 1, poorly differentiated = 2, VELIPI, mucinous colloid type, occlusion, bowel perforation: no = 0, yes = 1, MSI status: MSS = 0, MSI = 1. Abbreviations are as follows: DSS, disease-specific survival; AJCC and UICC TNM, the American Joint Committee on Cancer and the International Union Against Cancer TNM staging system; VELIPI, vascular emboli, lymphatic invasion, and perineural invasion; PHA, proportional hazards assumption; HR, hazard ratio; AIC, Akaike information criterion; MSI, microsatellite instability. The new Bethesda panel was used (Sacher et al., 2004).

*PHA test p < .05 violates the hazards assumption. If a marker in the final model violates the hazards assumption, the model will be adjusted for this marker.

*Significant.

DISCUSSION

Here, we performed a comprehensive analysis of tumor cell features and tumor microenvironment and immune parameters in three cohorts of patients (INSERM cohort 2, n=689; TCGA CRC cohort 1, n=270; TCGA pan-cancer cohort 3, n=3,659) in relation with the microsatellite instability status. Tumors can be classified on the basis of multiple morphologic, phenotypic, and functional factors, including the presence of microsatellite instability (Galon et al., 2014). It has been reported that some, but not all, published studies found an independent prognostic value of the microsatellite instability status for survival (Popat et al., 2005).

The mechanism by which the presence of a high frequency of frameshift mutations in microsatellite instability might influence clinical outcome is still unknown. One hypothesis could be related to the kinds of mutations that occur following the damage of the DNA MMR system. We found that MSI tumors had fewer mutations of APC, KRAS, and TP53 and more frequent mutations in ACVR2A, FBXW7, and the β-catenin (CTNNB1) genes than MSS tumors did, as previously reported (Westra et al., 2004). We also confirmed that MSI tumors had less CIN than MSS tumors did. However, none of these mutations, nor the CIN score, were associated with a significant difference in survival and therefore might not have a direct contribution to the positive prognostic value of microsatellite instability. In comparison, mutational load was associated with the degree of clinical benefit in melanoma (Snyder et al., 2014) and with durable clinical benefit to anti-PD1 and progression-free survival in lung cancer (Gubin et al., 2014).

An alternative hypothesis relates to the effect of microsatellite instability on an anti-tumor immune response (Angelova et al., 2016).
Our data demonstrate that a high frequency of frameshift mutations in microsatellite instability might influence clinical outcome by increasing the presence and functionality of tumor-specific effector memory T cells. MSI patients and patients with Lynch syndrome have a similar intratumoral immune density (Tougeron et al., 2013). Several large CRC studies have demonstrated that semi-quantification of T cell subpopulations is significantly associated with good prognosis, even after adjusting for stage, lymph node count, and molecular biomarkers, including microsatellite instability (Nosho et al., 2010; Ogino et al., 2009). Furthermore, the prognostic value associated with CD3+, CD8+, and CD45RO+ T cell infiltration in CRC has been demonstrated (Zlobec et al., 2010).

The importance of tumor-specific mutant antigens as targets of checkpoint blockade therapy, as well as for personalized cancer-specific vaccines, has been demonstrated in mouse models (Gubin et al., 2014). In humans, evidence for immunoediting has been reported (Rooney et al., 2015), but the experimental challenges of monitoring the in vivo expansion of potential anti-tumor effector T cells, to assess both the quality and amplitude of an anti-tumor response, mean that there is limited data regarding in situ responses to specific antigenic epitopes. Here, using genetic evidence (exome sequencing data) and immunogenic peptide predictions, we demonstrated that immunoediting of immunogenic frameshift and missense mutations occurs in CRC, and that it occurs more frequently in MSI tumors. Such an immunogenic epitope suitable for mutation-specific vaccination was recently described in glioma (Schumacher et al., 2014; Schumacher and Schreiber, 2015).

We showed that a tumor-specific T cell response toward a mutated TGFBRII class I neo-epitope could be detected in the primary tumor. Additionally, peripheral cytotoxic T cells from MSI patients specifically killed an HLA-matched MSI tumor cell line (in vitro). The cytotoxic activity was not restricted to one particular epitope, given that other peptides derived from frameshift mutations (ASTE1 and TAF1B) could be targeted by cytotoxic T cells of HLA-A*0201 MSI patients (data not shown). Our study demonstrates that strong and effective anti-tumor immunity might naturally be elicited against true tumor-specific antigens resulting from somatic mutations. Given that frameshift mutations are more common in MSI patients, mainly because of epigenetic silencing of a MMR gene, MSI patients might be expected to generate more targetable neo-antigens. The anti-tumor immunity phenotype might be shaped by a combination of multiple tumor parameters, including microsatellite instability, altered HLA expression, expression of tumor antigens, the mutational pathways (CpG-island methylation phenotype, or chromosome instability), and microenvironmental factors (Angell and Galon, 2013; Finn, 2006; Fridman et al., 2012; Ogino et al., 2011). Here, we showed that among MSI patients, only the ones with Immunoscres I3 and I4 have prolonged DSS.

The immune infiltrate heterogeneity observed in MSI tumors could be related to WNT/β-catenin pathway mutations, as recently described in melanoma (Spranger et al., 2015). MSI patients with a mutation had a decreased intratumoral CD8 density and a reduced PD1+ infiltrate in the CT in comparison to the other MSI patients, thus their response to immune checkpoint thera-
pies could be impaired. Moreover, among MSS patients, the ones with a high Immunoscore (I3 or I4) have a prolonged DSS, as well as increased PDCD1 expression and density in comparison to that of low Immunoscore MSS patients. Cox multivariate analysis, combining the histopathological features of the tumor (including T-stage and N-stage), microsatellite instability status, and Immunoscore, supports the advantage of Immunoscore over microsatellite instability in predicting recurrence and survival. We demonstrated a statistical dependence between the microsatellite instability and the immune criteria, with a superiority of the Immunoscore, given that it also predicts outcome in MSS patients. Thus, it can be hypothesized that at least part of the prognostic value of the microsatellite instability status could be attributed to major underlying differences of quality and density of infiltrating immune cells. It was also shown that MSI tumors contain a higher frequency of frameshift mutations, which can lead to immunogenic peptides, as demonstrated by the existence of anti-frameshift mutation peptide-specific T cells within the tumor.

Immune parameters associated with microsatellite instability could also have an impact on patient response to therapeutics. It was initially shown that fluorouracil-based adjuvant chemotherapy benefited stage II or III MSS patients, but not those with MSI tumors (Ribic et al., 2003), although this is not confirmed in all studies (Des Guetz et al., 2009). Chemotherapeutic agents can stimulate immunogenic cell death (Vaccelli et al., 2012) and can mediate therapeutic effects by reactivating pre-existing tumor-specific immune responses (Fridman et al., 2012; Galon et al., 2013). Frequent frameshift mutations from MSI patients could also provide potential targets for cancer vaccines. Vaccine approaches encompassing commonly mutated peptides could be particularly well-suited for MSI patients, given that these peptides might provide a boost to a potentially pre-existing immune response.

Similarly, recent advances in cellular immunity and tumor biology are guiding new approaches to adoptive T cell therapy (June, 2007) that have been reported to mediate potent tumor regression in metastatic cancers (Grupp et al., 2013; Restifo et al., 2012). As MSI patients present generally enhanced cytotoxic T cell responses, these naturally infiltrating T cells (Bindea et al., 2013b) provide efficient immunotherapy approaches to treat cancer, as recently illustrated in clinical trials boosting T cells responses with anti-CTLA4 (Hodi et al., 2010; Robert et al., 2011), anti-PDCD1 (PD-1) (Des Guetz et al., 2009; Topalian et al., 2012), and anti-CD274 (PD-L1) (Brahmer et al., 2012). There are clinical trials in MSI metastatic patients supporting the efficacy of anti-PD1 (Le et al., 2015). Our data would argue (1) that MSI patients at an early stage might benefit the most from checkpoint T cell therapies, given that they have a strong effector T cell response and more frequently present a high Immunoscore associated with augmented PD1 expression, (2) that only a subgroup of metastatic MSI patients might benefit from checkpoint T cell therapies, namely those having a high Immunoscore, and (3) that MSS patients with tumors highly infiltrated with immune cells could also benefit from the therapy.

Thus, the immune infiltration and Immunoscore should better define the prognosis of CRC patients, better identify patients at high risk of tumor recurrence regardless of MSI, and help to
predict and stratify patients who will benefit from immunotherapies (Church and Galon, 2015; Galon et al., 2013).

**EXPERIMENTAL PROCEDURES**

Patients with CRC were analyzed from two different cohorts. For cohort 1, we analyzed 270 CRC patients from the TCGA dataset (Cancer Genome Atlas, 2012). For cohort 2, analysis was done on 694 tissue samples collected at the Laennec-HEGP Hospitals (Paris) and Rouen Hospital (Rouen) from CRC patients who underwent primary resection of their tumor. Histopathological and clinical findings were scored according to the UICC TNM staging system (Table S1). Microsatellite instability status was assessed with the classical molecular new Bethesda panel (with markers BAT25, BAT26, NR21, NR24, and NR27). High MSI (MSI-H) patients were characterized and compared to the rest of the cohort, low MSI (MSI-L) and MSS patients. In addition, D2S123, D17S250, D5S346, BAT40, MYCL, and NR22 microsatellites were tested on 606 patients from cohort 2. Multiple techniques were used to investigate the tumor microenvironment, including quantitative real-time TaqMan PCR expression profiling with low-density arrays (Applied Biosystems). Immunohistochemistry on tissue microarray sections was performed to characterize and quantify the tumor immune infiltrate. Specifically, we quantified Immunoscore by using CD3 and CD8 or CD8 and CD45RO staining in the CT and IM. Immunoscore I0 is when a patient has low density for two markers in both tumor regions, and Immunoscores in both tumor regions (CT and IM). Immunoscore I4 is when two markers (CD3, CD8, or CD45) have high density score by using CD3 and CD8 or CD45RO staining in the CT and IM.

**REFERENCES**


